IA y medios de aprendizaje asistido por Thinkable para educación física: un estudio descriptivo sobre la educación colaborativa de profesores

Autores/as

  • Yarmani Yarmani Universitas Bengkulu
  • Bogy Restu Ilahi Universitas Bengkulu
  • Syafrial Syafrial Universitas Bengkulu
  • Fina Hiasa Universitas Bengkulu
  • Septian Raibowo Universitas Bengkulu https://orcid.org/0000-0001-9588-2752
  • Rio Kurniawan Universitas Bengkulu
  • Ardo Okilanda Universitas Negeri Padang
  • Samsul Azhar Universitas Sriwijaya

DOI:

https://doi.org/10.47197/retos.v61.109851

Palabras clave:

IA en Educación, Thunkable, Educación FísicaEducación Física

Resumen

Esta investigación tiene como objetivo determinar el papel de la Inteligencia Artificial (IA) y el diseño de aplicaciones de medios de aprendizaje interactivos Thunkable en las prácticas cerebrales de la formación docente en el contexto de la formación integrada con métodos de educación física (EF). Surgen preguntas sobre cómo los profesores pueden reforzar las lecciones de educación física con tecnologías como la IA y Thunkable y qué desafíos enfrentan al hacerlo. Este estudio utilizó un diseño de investigación descriptivo y los datos se recopilaron mediante entrevistas semiestructuradas con profesores de educación física que conocían y habían utilizado IA o Thunkable en su práctica docente. El análisis de los datos cuantitativos también fue descriptivo, pero se centró en transcribir los datos cualitativos basados, entre otros, en la competencia tecnológica de los docentes, los beneficios y desafíos de la implementación, los resultados de los estudiantes y las respuestas cualitativas de los docentes. Los resultados revelaron que, a pesar de que el 70% de los profesores eran conscientes de la IA en las clases de educación física, sólo el 30% de ellos utilizaba las herramientas de IA disponibles para las clases. De los pocos profesores que intentaron utilizar la aplicación Thunkable, sólo el 25 % pudo generar aplicaciones, que es el objetivo de la aplicación. Los profesores sugirieron que los estudiantes se beneficiarían mucho de la IA, especialmente a través de la participación activa recompensada con retroalimentación instantánea sin la posibilidad de abordar adecuadamente las inquietudes debido a una capacitación e infraestructuras técnicas insuficientes. Las implicaciones de este estudio se centrarán en la lingüística educativa considerando los usos prácticos de las herramientas de IA en el lenguaje educativo en términos de educación física. El uso de sistemas de inteligencia artificial en las lecciones de educación física puede mejorar la comunicación y la interacción en un entorno multilingüe que promueve tanto el lenguaje como las habilidades de movimiento.

Citas

Alam, A., & Mohanty, A. (2023). Educational technology: Exploring the convergence of technology and pedagogy through mobility, interactivity, AI, and learning tools. Cogent Engineering, 10(2), 2283282. https://doi.org/10.1080/23311916.2023.2283282

Alfurqan, A., Syaputri, W., Okilanda, A., Yulianti, A. I., Indra, Y., Hastianah, H., Isnaeni, M., Widyasari, W., & Amrista, R. (2024). Islamic values and cultural identity in world cup football commentary. Retos, 59, 1149–1157. https://doi.org/10.47197/retos.v59.109355

Aung, Z. H., Sanium, S., Songsaksuppachok, C., Kusakunniran, W., Precharattana, M., Chuechote, S., Pongsanon, K., & Ritthipravat, P. (2022). Designing a novel teaching platform for AI: A case study in a Thai school context. Journal of Computer Assisted Learning, 38(6), 1714–1729. https://doi.org/10.1111/jcal.12706

Clark, R. A., Thilarajah, S., Williams, G., Kahn, M., Heywood, S., Tan, H. H., Hough, E. J., & Pua, Y. (2021). Kits for wearable sensor systems: Exploring software and hardware system design, building guides, and opportunities for clinical re-habilitation. In Digital Health (pp. 1–25). Elsevier.

Coimbra, M., Cody, R., Kreppke, J.-N., & Gerber, M. (2021). Impact of a physical education-based behavioural skill training program on cognitive antecedents and exercise and sport behaviour among adolescents: A cluster-randomized con-trolled trial. Physical Education and Sport Pedagogy, 26(1), 16–35. https://doi.org/10.1080/17408989.2020.1799966

Dawadi, S., Shrestha, S., & Giri, R. A. (2021). Mixed-methods research: A discussion on its types, challenges, and criticisms. Journal of Practical Studies in Education, 2(2), 25–36. https://doi.org/10.46809/jpse.v2i2.20

Deo, R. C., Yaseen, Z. M., Al-Ansari, N., Nguyen-Huy, T., Langlands, T. A. M., & Galligan, L. (2020). Modern artificial intelli-gence model development for undergraduate student performance prediction: An investigation on engineering mathematics courses. IEEE Access, 8, 136697–136724. https://doi.org/10.1109/ACCESS.2020.3010938

Effendi, H., Asepsujana, A., Fadlan, A. R., Batubara, R., Okilanda, A., & Syaputri, W. (2024). Improvement of physical fitness through electronic modules based on play activities. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 58, 445–449.

Evans, R. R., & Sims, S. K. (2022). Health and physical education for elementary classroom lecturers: An integrated approach. Human

Farrokhi, A., Farahbakhsh, R., Rezazadeh, J., & Minerva, R. (2021). Application of Internet of Things and artificial intelligence for smart fitness: A survey. Computer Networks, 189, 107859. https://doi.org/10.1016/j.comnet.2021.107859

García-Martínez, I., Fernández-Batanero, J. M., Fernández-Cerero, J., & León, S. P. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. Journal of New Approaches in Educational Research, 12(1), 171–197. https://doi.org/10.7821/naer.2023.1.1240

Gopal, V. (2020). Digital education transformation: A pedagogical revolution. I-Manager’s Journal of Educational Technology, 17(2), 66.

Griffiths, M. A., Goodyear, V. A., & Armour, K. M. (2022). Massive open online courses (MOOCs) for professional develop-ment: Meeting the needs and expectations of physical education lecturers and youth sport coaches. Physical Education and Sport Pedagogy, 27(3), 276–290. https://doi.org/10.1080/17408989.2021.1874901

Harner, T. (2024). The Holistic Approach Integrating Health Physical Education and Recreation. Health Science Journal, 18(4), 1–3.

Kim, J. (2024). Leading lecturers’ perspective on lecturer-AI collaboration in education. Education and Information Technologies, 29(7), 8693–8724. https://doi.org/10.1007/s10639-023-12109-5

Kuru, H. (2024). Identifying Behavior Change Techniques in an Artificial Intelligence-Based Fitness App: A Content Analysis. Health Education & Behavior, 51(4), 636–647. https://doi.org/10.1177/10901981231213586

Lakshmi, A. J., Kumar, A., Kumar, M. S., Patel, S. I., Naik, S. L., & Ramesh, J. V. N. (2023). Artificial intelligence in steering the digital transformation of collaborative technical education. The Journal of High Technology Management Research, 34(2), 100467. https://doi.org/10.1016/j.hitech.2023.100467

Liu, J., Wang, L., & Zhou, H. (2021). The application of human–computer interaction technology fused with artificial intelli-gence in sports moving target detection education for college athlete. Frontiers in Psychology, 12, 677590.

Luo, Y.-J., Lin, M.-L., Hsu, C.-H., Liao, C.-C., & Kao, C.-C. (2020). The effects of team-game-tournaments application to-wards learning motivation and motor skills in college physical education. Sustainability, 12(15), 6147. https://doi.org/10.3390/su12156147

Markauskaite, L., Marrone, R., Poquet, O., Knight, S., Martinez-Maldonado, R., Howard, S., Tondeur, J., De Laat, M., Shum, S. B., & Gašević, D. (2022). Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? Computers and Education: Artificial Intelligence, 3, 100056. https://doi.org/10.1016/j.caeai.2022.100056

Mokmin, N. A. M., & Jamiat, N. (2021). The effectiveness of a virtual fitness trainer app in motivating and engaging students for fitness activity by applying motor learning theory. Education and Information Technologies, 26(2), 1847–1864. https://doi.org/10.1007/s10639-020-10337-7

Mõttus, R., Wood, D., Condon, D. M., Back, M. D., Baumert, A., Costantini, G., Epskamp, S., Greiff, S., Johnson, W., Lukaszewski, A., Murray, A., Revelle, W., Wright, A. G. C., Yarkoni, T., Ziegler, M., & Zimmermann, J. (2020). De-scriptive, Predictive and Explanatory Personality Research: Different Goals, Different Approaches, but a Shared Need to Move beyond the Big Few Traits. European Journal of Personality, 34(6), 1175–1201. https://doi.org/10.1002/per.2311

Mukul, E., & Büyüközkan, G. (2023). Digital transformation in education: A systematic review of education 4.0. Technological Forecasting and Social Change, 194, 122664. https://doi.org/10.1016/j.techfore.2023.122664

Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Lecturers’ trust in AI ‐powered educational technology and a professional development program to improve it. British Journal of Educational Technology, 53(4), 914–931. https://doi.org/10.1111/bjet.13232

Okilanda, A., Ihsan, N., Arnando, M., Hasan, B., Shapie, M. N. M., Tulyakul, S., Duwarah, T., & Ahmed, M. (2024). Revving up performance: The impact of interval training with weighted resistance on speed enhancement in university stu-dents. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación, 58, 469–476.

Okilanda, A., Putri, S. A. R., Fajar, M., Febrian, M., Saputra, M., Tulyakul, S., Duwarah, T., Putra, A., Hasan, B., & Syaputri, W. (2024). Endurance training and its impact on physical health among university students. Retos, 59, 1092–1102. https://doi.org/10.47197/retos.v59.107516

Palanivel, K. (2020). Emerging technologies to smart education. Int. J. Comput. Trends Technol, 68(2), 5–16. https://doi.org/10.14445/22312803/IJCTT-V68I2P102

Papa, R., & Jackson, K. M. (2021). Classrooms in 2051. In R. Papa & K. Moran Jackson (Eds.), Artificial Intelligence, Human Agency and the Educational Leader (pp. 103–131). Springer International Publishing. https://doi.org/10.1007/978-3-030-77610-7_4

Phonlakrai, M., Zengkeaw, K., Nuangchamnong, N., Kulpakdee, N., & Kawvised, S. (2024). Effectiveness of smartphone applications for magnetic resonance imaging learning among radiological technology students: An alternative tool for enhancing knowledge. Journal of Medical Imaging and Radiation Sciences, 55(4), 101727. https://doi.org/10.1016/j.jmir.2024.101727

Raykar, S., & Shet, V. (2023). Mobile Healthcare Application for Virtual Patient Monitoring System. In M. Gupta, S. Ghatak, A. Gupta, & A. L. Mukherjee (Eds.), Artificial Intelligence on Medical Data (Vol. 37, pp. 317–330). Springer Nature Sin-gapore. https://doi.org/10.1007/978-981-19-0151-5_27

Sadiku, M. N., Musa, S. M., & Chukwu, U. C. (2022). Artificial intelligence in education. iUniverse.

Sargent, J., & Calderón, A. (2021). Technology-enhanced learning physical education? A critical review of the literature. Jour-nal of Teaching in Physical Education, 41(4), 689–709. https://doi.org/10.1123/jtpe.2021-0136

Seldon, A., Abidoye, O., & Metcalf, T. (2020). The Fourth Education Revolution Reconsidered: Will Artificial Intelligence Enrich Or Diminish Humanity? Legend Press Ltd.

Shah, P. (2023). AI and the Future of Education: Teaching in the Age of Artificial Intelligence. John Wiley & Sons.

Siegle, D., & Hook, T. S. (2023). Learning from and learning with technology. In Content-based curriculum for advanced learners (pp. 595–618). Routledge.

Smith, J. M. (2021). Combinatorial, Linear, Integer and Nonlinear Optimization Apps: COLINA Grande (Vol. 175). Springer Nature.

Syaputri, W., Revita, I., Oktavianus, O., Usman, F., Zulfadhli, Z., Okilanda, A., Isnaeni, M., & Wijayanti, R. A. (2024). Game talk: Exploring the linguistic features of sports commentary. Retos, 59, 1116–1125. https://doi.org/10.47197/retos.v59.108653

Venzke, J., Hohmann, R., Krombholz, A., Platen, P., & Reichert, M. (2024). Enhancing Learning Experiences in Sports Sci-ence through Video and AI-generated Feedback. In P. Salden & J. Leschke (Eds.), Learning Analytics und Künstliche In-telligenz in Studium und Lehre (pp. 79–95). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-42993-5_5

Volansky, A. (2023). The Three Waves of Reform in the World of Education 1918 – 2018: Students of Yesterday, Students of Tomorrow. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5771-0

Wang, T., & Cheng, E. C. K. (2021). An investigation of barriers to Hong Kong K-12 schools incorporating Artificial Intelli-gence in education. Computers and Education: Artificial Intelligence, 2, 100031. https://doi.org/10.1016/j.caeai.2021.100031

Zeng, H., Liu, J., Wu, D., & Yue, L. (Eds.). (2023). Smart Education Best Practices in Chinese Schools. Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6097-2

Zhang, J., & Zhang, Z. (2024). AI in lecturer education: Unlocking new dimensions in teaching support, inclusive learning, and digital literacy. Journal of Computer Assisted Learning, 40(4), 1871–1885. https://doi.org/10.1111/jcal.12988

Zhang, L., Sengan, S., & Manivannan, P. (2022). The Capture and Evaluation System of Student Actions in Physical Education Classroom Based on Deep Learning. Journal of Interconnection Networks, 22(Supp02), 2143025. https://doi.org/10.1142/S0219265921430258

Descargas

Publicado

2024-11-20

Cómo citar

Yarmani, Y., Restu Ilahi, B., Syafrial, S., Hiasa, F., Raibowo, S., Kurniawan, R., Okilanda, A., & Azhar, S. (2024). IA y medios de aprendizaje asistido por Thinkable para educación física: un estudio descriptivo sobre la educación colaborativa de profesores. Retos, 61, 1239–1247. https://doi.org/10.47197/retos.v61.109851

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 4 > >>