El mecanismo del ejercicio físico aumenta la glutatión peroxidasa como antioxidante endógeno: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.47197/retos.v63.108856

Palabras clave:

Glutatión Peroxidasa, Antioxidante, Ejercicio Físico

Resumen

Objetivo del estudio. Este estudio pretende analizar el efecto del ejercicio físico sobre el aumento de glutatión peroxidasa como biomarcador de antioxidantes endógenos. Materiales y métodos. Este tipo de investigación de revisión sistemática utiliza búsquedas en bases de datos de revistas como MEDLINE-Pubmed, Web of Science, Scopus y Science Direct. Los criterios de inclusión en este estudio fueron artículos publicados en los últimos 5 años y artículos que trataran sobre la glutatión peroxi-dasa, el ejercicio físico y los antioxidantes. Se identificaron un total de 95 artículos de las bases de datos Science Direct, Pubmed y Web of Science. Se seleccionaron y analizaron para esta revisión sistemática un total de 10 artículos que cumplían los criterios de inclusión. Para las operaciones estándar, este estudio siguió la evaluación Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Resultados. Esta revisión sistemática informa de que se ha demostrado que el ejercicio físico aumenta los niveles de glutatión peroxidasa como marcador de antioxidantes endógenos.  Conclusiones. Se ha demostrado que el ejercicio físico aumenta los niveles de glutatión peroxidasa como marcador de antioxidantes endógenos. Este aumento está provocado por las ERO, que son una respuesta fisiológica al ejercicio.

Citas

Alehagen, U., Opstad, T. B., Alexander, J., Larsson, A., & Aaseth, J. (2021). Impact of selenium on biomarkers and clinical aspects related to ageing. A review. Biomolecules, 11(10), 1–14. https://doi.org/10.3390/biom11101478

Bellafiore, M., Bianco, A., Battaglia, G., Naccari, M. S., Caramazza, G., Padulo, J., Chamari, K., Paoli, A., & Palma, A. (2019). Training session intensity affects plasma redox status in amateur rhythmic gymnasts. Journal of Sport and Health Science, 8(6), 561–566. https://doi.org/10.1016/j.jshs.2016.04.008

Bellafiore, M., Pintaudi, A. M., Thomas, E., Tesoriere, L., Bianco, A., Cataldo, A., Cerasola, D., Traina, M., Livrea, M. A., & Palma, A. (2021). Redox and autonomic responses to acute exercise-post recovery following Opuntia ficus-indica juice intake in physically active women. Journal of the International Society of Sports Nutrition, 18(1), 1–10. https://doi.org/10.1186/s12970-021-00444-2

Börzsei, D., Kiss, V., Nagy, A., Hoffmann, A., Török, S., Almási, N., Veszelka, M., Varga, C., & Szabó, R. (2024). Moderate-Intensity Swimming Alleviates Oxidative Injury in Ischemic Heart. Applied Sciences, 14(5), 2073. https://doi.org/10.3390/app14052073

Bunpo, P., Chatarurk, A., Intawong, K., Naosuk, K., & Klangsinsirikul, P. (2021). Effects of ascorbic acid supplementation on immune status in healthy women following a single bout of exercise. Sport Sciences for Health, 17(3), 635–645. https://doi.org/10.1007/s11332-020-00726-3

Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants, 11(2). https://doi.org/10.3390/antiox11020350

Delrieu, L., Touillaud, M., Pérol, O., Morelle, M., Martin, A., Friedenreich, C. M., Mury, P., Dufresne, A., Bachelot, T., Heudel, P. E., Fervers, B., Trédan, O., & Pialoux, V. (2021). Impact of Physical Activity on Oxidative Stress Markers in Patients with Metastatic Breast Cancer. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/6694594

Gomez-cabrera, M. C., Carretero, A., Millan-domingo, F., Garcia-dominguez, E., Correas, A. G., Olaso-gonzalez, G., & Vi, J. (2021). Redox Biology Redox-related biomarkers in physical exercise. 42. https://doi.org/10.1016/j.redox.2021.101956

Handy, D. E., Joseph, J., & Loscalzo, J. (2021). Selenium, a micronutrient that modulates cardiovascular health via redox enzymology. Nutrients, 13(9). https://doi.org/10.3390/nu13093238

Heyne, E., Zeeb, S., Junker, C., Petzinna, A., Schrepper, A., Doenst, T., Koch, L. G., Britton, S. L., & Schwarzer, M. (2024). Exercise Training Differentially Affects Skeletal Muscle Mitochondria in Rats with Inherited High or Low Exercise Capacity. Cells, 13(5). https://doi.org/10.3390/cells13050393

Joanisse, S., McKendry, J., Lim, C., Nunes, E. A., Stokes, T., Mcleod, J. C., & Phillips, S. M. (2021). Understanding the effects of nutrition and post-exercise nutrition on skeletal muscle protein turnover: Insights from stable isotope studies. Clinical Nutrition Open Science, 36, 56–77. https://doi.org/10.1016/j.nutos.2021.01.005

Kazem, E. N., & Abboud, N. M. (2024). The effect of exercises similar to playing according to the aerobic energy system on the enzyme (GPX) and peaceful shooting for female basketball players. Journal of Sports Science and Nutrition, 5(1), 05–07. https://doi.org/10.33545/27077012.2024.v5.i1a.226

Korivi, M., Mohammed, A., Ye, W., & Lebaka, V. R. (2023). Editorial: Nutritional and physical activity strategies to boost immunity, antioxidant status and health, Volume III. Frontiers in Physiology, 14(April), 1–2. https://doi.org/10.3389/fphys.2023.1199066

Kwon, D. A., Bak, S. Bin, Kim, Y. S., Kim, S. K., & Lee, H. S. (2024). Antioxidant and Anti-Fatigue Effects of a Standardized Botanical Extract Fraction (HemoHIM) in Forced-Exercised Aged Mice. Journal of Medicinal Food, 00(0), 1–8. https://doi.org/10.1089/jmf.2023.K.0234

Li, J., Xu, Y., Liu, T., Xu, Y., Zhao, X., & Wei, J. (2023). The Role of Exercise in Maintaining Mitochondrial Proteostasis in Parkinson’s Disease. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097994

Macarro, M. S., Ávila‐gandía, V., Pérez‐piñero, S., Cánovas, F., García‐muñoz, A. M., Abellán‐ruiz, M. S., Victoria‐montesinos, D., Luque‐rubia, A. J., Climent, E., Genovés, S., Ramon, D., Chenoll, E., & López‐román, F. J. (2021). Antioxidant effect of a probiotic product on a model of oxidative stress induced by high‐intensity and duration physical exercise. Antioxidants, 10(2), 1–14. https://doi.org/10.3390/antiox10020323

Magherini, F., Fiaschi, T., Marzocchini, R., Mannelli, M., Gamberi, T., Modesti, P. A., & Modesti, A. (2019). Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free Radical Research, 53(11–12), 1155–1165. https://doi.org/10.1080/10715762.2019.1697438

Mahindru, A., Patil, P., & Agrawal, V. (2023). Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus, 15(1), 1–7. https://doi.org/10.7759/cureus.33475

Mendes, S., Leal, D. V., Baker, L. A., Ferreira, A., Smith, A. C., & Viana, J. L. (2023). The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076017

Mohammadjafari, H., Arazi, H., Nemati, N., Bagherpoor, T., & Suzuki, K. (2019). Acute effects of resistance exercise and the use of GH or IGF-1 hormones on oxidative stress and antioxidant markers in bodybuilders. Antioxidants, 8(12), 1–8. https://doi.org/10.3390/antiox8120587

Olaso-gonzalez, G., Viña, J., Brioche, T., & Chopard, A. (2020). Redox Biology Redox modulation of muscle mass and function. Redox Biology, 35(March), 101531. https://doi.org/10.1016/j.redox.2020.101531

Pei, J., Pan, X., Wei, G., & Hua, Y. (2023). Research progress of glutathione peroxidase family (GPX) in redoxidation. Frontiers in Pharmacology, 14(March), 1–14. https://doi.org/10.3389/fphar.2023.1147414

Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020a). Exercise-induced oxidative stress : Friend or foe ? 9, 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020b). Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001

Powers, S. K., Goldstein, E., Schrager, M., & Ji, L. L. (2023). Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants, 12(1). https://doi.org/10.3390/antiox12010039

Reza salehi, O., ghabezi, S., Khajehlandi, A., & Mohammadi, A. (2020). Interactive effect of aerobic training and estrogen consumption on serum levels of catalase and glutathione peroxidase enzymes in ovariectomized rats. Jorjani Biomedicine Journal, 8(2), 38–47. https://doi.org/10.29252/jorjanibiomedj.8.2.38

Roh, H., Cho, S., & So, W. (2020). A Cross-Sectional Study Evaluating the E ff ects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. 1–11.

Rusip, G., & Suhartini, S. M. (2020). Effects of moderate intensity exercise on glutathione peroxidase activity and vo2 max in elderly women. Open Access Macedonian Journal of Medical Sciences, 8(A), 230–233. https://doi.org/10.3889/oamjms.2020.3837

Rytz, C. L., Pialoux, V., Mura, M., Martin, A., Hogan, D. B., Hill, M. D., & Poulin, X. M. J. (2024). Impact of aerobic exercise , sex , and metabolic syndrome on markers of oxidative stress : results from the Brain in Motion study. 24, 748–756. https://doi.org/10.1152/japplphysiol.00667.2019

Saberi, S., Askaripour, M., & Khaksari, M. (2024). Heliyon Exercise training improves diabetic renal injury by reducing fetuin-A , oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749

Shamsnia, E., Matinhomaee, H., Azarbayjani, M. A., & Peeri, M. (2023). The Effect of Aerobic Exercise on Oxidative Stress in Skeletal Muscle Tissue: A Narrative Review. Gene, Cell and Tissue, 10(4). https://doi.org/10.5812/gct-131964

Souza, J., da Silva, R. A., da Luz Scheffer, D., Penteado, R., Solano, A., Barros, L., Budde, H., Trostchansky, A., & Latini, A. (2022). Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants, 11(5), 1–18. https://doi.org/10.3390/antiox11050826

Vargas-Ortiz, K., Pérez-Vázquez, V., & Macías-Cervantes, M. H. (2019). Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. International Journal of Molecular Sciences, 20(11), 1–11. https://doi.org/10.3390/ijms20112717

Wang, F., Wang, X., Liu, Y., & Zhang, Z. (2021). Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/3846122

Wibawa, J. C., Arifin, M. Z., & Herawati, L. (2021). Ascorbic Acid Drink after Submaximal Physical Activity can Maintain the Superoxide Dismutase Levels in East Java Student Regiment. Indian Journal of Forensic Medicine & Toxicology, 15(3), 3383–3392. https://doi.org/10.37506/ijfmt.v15i3.15824

Wouda, M. F., Slettahjell, H. B., Lundgaard, E., Bastani, N. E., Raastad, T., Blomhoff, R., & Kostovski, E. (2023). Acute changes in antioxidants and oxidative stress to vigorous arm exercise: an intervention trial in persons with spinal cord injury and healthy controls. Spinal Cord Series and Cases, 9(1). https://doi.org/10.1038/s41394-023-00590-6

Wyckelsma, V. L., Venckunas, T., Brazaitis, M., Gastaldello, S., Snieckus, A., Eimantas, N., Baranauskiene, N., Subocius, A., Skurvydas, A., Pääsuke, M., Gapeyeva, H., Kaasik, P., Pääsuke, R., Kamandulis, S., & Westerblad, H. (2020). Vitamin C and E Treatment Blunts Sprint Interval Training – Induced Changes in Inflammatory Signaling in Recreationally Active Elderly Humans. 1–20.

Xia, Q., Li, P., Casas-martinez, J. C., & Miranda-vizuete, A. (2024). Peroxiredoxin 2 Regulates DAF-16 / FOXO Mediated Mitochondrial.

Ye, Y., Lin, H., Wan, M., Qiu, P., Xia, R., He, J., Tao, J., Chen, L., & Zheng, G. (2021). The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Frontiers in Physiology, 12(October), 1–11. https://doi.org/10.3389/fphys.2021.701151

Yol, Y., Turgay, F., Yigittürk, O., Aşıkovalı, S., & Durmaz, B. (2020). BBA - Molecular Basis of Disease The effects of regular aerobic exercise training on blood nitric oxide levels and oxidized LDL and the role of eNOS intron 4a / b polymorphism. BBA - Molecular Basis of Disease, 1866(12), 165913. https://doi.org/10.1016/j.bbadis.2020.165913

Zhao, L., Zong, W., Zhang, H., & Liu, R. (2019). Kidney Toxicity and Response of Selenium Containing Protein-glutathione Peroxidase (Gpx3) to CdTe QDs on Different Levels. Toxicological Sciences, 168(1), 201–208. https://doi.org/10.1093/toxsci/kfy297

Zhou, Z., Chen, C., Teo, E., Zhang, Y., Huang, J., Xu, Y., & Gu, Y. (2022). Intracellular Oxidative Stress Induced by Physical Exercise in Adults : Systematic Review and Meta-Analysis.

Descargas

Publicado

2025-01-28

Cómo citar

Wibawa, J. C., Febrianto, N., Fudin, M. S., Ockta, Y., & Festiawan, R. (2025). El mecanismo del ejercicio físico aumenta la glutatión peroxidasa como antioxidante endógeno: una revisión sistemática. Retos, 63, 610–619. https://doi.org/10.47197/retos.v63.108856

Número

Sección

Revisiones teóricas sistemáticas y/o metaanálisis

Artículos más leídos del mismo autor/a

1 2 3 > >>