Efectos de dos tipos de entrenamiento en fuerza uno basado en la velocidad de ejecución y otro en % de 1RM sobre: la composición corporal, activación neuromuscular, y variables cinéticas y cinemáticas, en mujeres físicamente activas

Autores/as

DOI:

https://doi.org/10.47197/retos.v62.108002

Palabras clave:

perfil carga-velocidad, velocidad media propulsiva, entrenamiento basado en la velocidad, %1RM, masa ósea, masa muscular, actividad neuromuscular

Resumen

El propósito de este estudio, fue investigar los efectos de dos tipos de entrenamiento de fuerza (RT), uno basado en la velocidad de desplazamiento de la carga (VBT), versus otro realizado al 70-80% de 1RM (PBT), sobre la masa muscular (MM), densidad mineral ósea (DMO), componente mineral óseo (CMO), activación neuromuscular (EMG), fuerza máxima en sentadilla (FSQ), salto vertical (VJ), potencia de pedaleo (PP) y velocidad de desplazamiento sobre 30 m (RV30). 31 mujeres se distribuyeron aleatoriamente en los dos grupos: VBT (n=16) o PBT (n=15), que entrenaron 3 veces por semana, durante 12 semanas. Antes y después del entrenamiento se determinaron los valores de FSQ, VJ, PP, RV30, BMD, BMC, MM y EMG. El grupo VBT entrenó a una velocidad propulsiva (VMP) de 0,68 ±0,08 m s − 1 y PBT entrenó a 70-80% de 1RM. El RT produjo aumentos significativos (p < 0,05) en los dos grupos en FSQ (VBT 33,79%, PBT 27,94%), VJ (VBT 19,11%, 8,77% PBT), RV30 (VBT 6,27%, PBT 1,66%), PP (VBT 32,2%, PBT 16,11%), MM sin grasa (VBT 3,7%, PBT 2,64%) CMO (VBT 0,39%, PBT 0,25%) y en DMO (VBT 0,76%, PBT 0,80%). No se observaron variaciones significativas en la actividad EMG en ninguno de los grupos. Se identificaron diferencias significativas entre los dos grupos de entrenamiento para DMO, PP, CMJ y RV30. En conclusión, el grupo VBT mostró mejores resultados que PBT con una menor carga de entrenamiento, lo cual es importante para un mejor seguimiento de la fatiga durante el entrenamiento de fuerza.

Biografía del autor/a

Jairo Alejandro Fernandez Ortega , Universidad Pedagógica Nacional de Colombia, Universidad de Ciencias Aplicadas y ambientales

laboratorio de Fisiolíga del Ejercicio, Facultad de educación Física

Citas

Banyard, G., Nosaka, K., Haff, & G., G. (2017). Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. J Strength Cond Res, 31(7), 1897-1904. doi:10.1519/jsc.0000000000001657

Banyard, G., Tufano, J., Weakley, J. (2021). Superior Changes in Jump, Sprint, and Change-of-Direction Performance but Not Maximal Strength Following 6 Weeks of Velocity-Based Training Compared With 1-Repetition-Maximum Percentage-Based Training. Int J Sports Physiol Perform, 16(2), 232-242. doi:10.1123/ijspp.2019-0999

Banyard, H., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int J Sports Physiol Perform, 14(2), 246-255. doi:10.1123/ijspp.2018-0147

Barón Barón, A. C., Fernandez Ortega, J. A., & Camargo Rojas, D. A. (2024). Efectos de dos programas de entrenamiento de fuerza sobre la capacidad física funcional y activación muscular en un grupo de adultos mayores. Retos, 51, 741–748. https://doi.org/10.47197/retos.v51.99901

Blazevich, A. J., & Jenkins, D. G. (2002). Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. J Sports Sci, 20(12), 981-990. doi:10.1080/026404102321011742

Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., . . . Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol, 88(1-2), 50-60. doi:10.1007/s00421-002-0681-6

Cavarretta, D. J., Hall, E. E., & Bixby, W. R. (2019). The acute effects of resistance exercise on affect, anxiety, and mood – practical implications for designing resistance training programs. International Review of Sport and Exercise Psychology, 12(1), 295-324. doi:10.1080/1750984X.2018.1474941

Conceição, F., Fernandes, J., Lewis, M., Gonzaléz-Badillo, J. J., & Jimenéz-Reyes, P. (2016). Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci, 34(12), 1099-1106. doi:10.1080/02640414.2015.1090010

Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J Strength Cond Res, 34(1), 46-53. doi:10.1519/jsc.0000000000003089

Fernandez Ortega, J. A., los Reyes, Y. G. D., & Garavito Peña, F. R. (2020). Effects of strength training based on velocity versus traditional training on muscle mass, neuromuscular activation, and indicators of maximal power and strength in girls soccer players. Apunts Sports Medicine, 55(206), 53-61. doi:https://doi.org/10.1016/j.apunsm.2020.03.002

García-Ramos, A., Janicijevic, D., González-Hernández, J. M., Keogh, J. W. L., & Weakley, J. (2020). Reliability of the velocity achieved during the last repetition of sets to failure and its association with the velocity of the 1-repetition maximum. PeerJ, 8, e8760. doi:10.7717/peerj.8760

Gonzalez-Badillo, J. J., Marques, M. C., & Sanchez-Medina, L. (2011). The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet, 29a, 15-19. doi:10.2478/v10078-011-0053-6

Gonzalez-Badillo, J. J., Pareja-Blanco, F., Rodriguez-Rosell, D., Abad-Herencia, J. L., Del Ojo-Lopez, J. J., & Sanchez-Medina, L. (2015). Effects of velocity-based resistance training on young soccer players of different ages. J Strength Cond Res, 29(5), 1329-1338. doi:10.1519/jsc.0000000000000764

Gonzalez-Badillo, J. J., & Sanchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med, 31(5), 347-352. doi:10.1055/s-0030-1248333

González-Hernández, J., García Ramos, A., Capelo-Ramírez, F., Castaño, A., Marquez, G., Boullosa, D., & Jimenez-Reyes, P. (2017). Mechanical, Metabolic, and Perceptual Acute Responses to Different Set Configurations in Full Squat. Journal of Strength and Conditioning Research, 34,1. 1581-1590. doi:10.1519/JSC.0000000000002117

Hakkinen, K., Kraemer, W. J., Newton, R. U., & Alen, M. (2001). Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand, 171(1), 51-62. doi:10.1046/j.1365-201X.2001.00781.x

Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G.( 2000). Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol, 10(5), 361-74. doi: 10.1016/s1050-6411(00)00027-4. PMID: 11018445.

Ikezoe, T., Kobayashi, T., Nakamura, M., & Ichihashi, N. (2020). Effects of Low-Load, Higher-Repetition vs. High-Load, Lower-Repetition Resistance Training Not Performed to Failure on Muscle Strength, Mass, and Echo Intensity in Healthy Young Men: A Time-Course Study. J Strength Cond Res, 34(12), 3439-3445. doi:10.1519/jsc.0000000000002278

Jiménez-Reyes, P., Castaño-Zambudio, A., Cuadrado-Peñafiel, V., González-Hernández, J. M., Capelo-Ramírez, F., Martínez-Aranda, L. M., & González-Badillo, J. J. (2021). Differences between adjusted vs. non-adjusted loads in velocity-based training: consequences for strength training control and programming. PeerJ, 9, e10942. doi:10.7717/peerj.10942

Keeler, L. K., Finkelstein, L. H., Miller, W., & Fernhall, B. (2001). Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J Strength Cond Res, 15(3), 309-314.

Krieger, J. W. (2010). Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. J Strength Cond Res, 24(4), 1150-1159. doi:10.1519/JSC.0b013e3181d4d436

Lopes, C. R., Aoki, M. S., Crisp, A. H., de Mattos, R. S., Lins, M. A., da Mota, G. R., . . . Marchetti, P. H. (2017). The Effect of Different Resistance Training Load Schemes on Strength and Body Composition in Trained Men. Journal of human kinetics, 58, 177-186. doi:10.1515/hukin-2017-0081

Maddalozzo, G. F., & Snow, C. M. (2000). High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int, 66(6), 399-404. doi:10.1007/s002230010081

McBride JM, B. J., Triplett-McBride T. . (2003). Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition. Eur J Appl Physiol, 90(5-6), 626-632.

Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., . . . Phillips, S. M. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of applied physiology (Bethesda, Md. : 1985), 121(1), 129-138. doi:10.1152/japplphysiol.00154.2016

Orange, S., Liefeith, A., Metcalfe, J., Robinson, A., & Applegarth, M. (2019). Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. International Journal of Sports Physiology and Performance, 15, 1-19. doi:10.1123/ijspp.2019-0058

Padulo, J., Mignogna, P., Mignardi, S., Tonni, F., & D'Ottavio, S. (2012). Effect of different pushing speeds on bench press. Int J Sports Med, 33(5), 376-380. doi:10.1055/s-0031-1299702

Pareja-Blanco, F., Alcazar, J., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., Rodriguez-Lopez, C., Hidalgo-de Mora, J., Ortega-Becerra, M. (2020). Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand J Med Sci Sports, 30(11), 2154-2166. doi:10.1111/sms.13775

Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Gorostiaga, E. M., & Gonzalez-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med, 35(11), 916-924. doi:10.1055/s-0033-1363985

Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Gonzalez-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports, 27(7), 724-735. doi:10.1111/sms.12678

Pruitt, L. A., Taaffe, D. R., & Marcus, R. (1995). Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res, 10(11), 1788-1795. doi:10.1002/jbmr.5650101123

Putman CT, Gillies E, MacLean IM, Bell GJ. (2004). Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol, 92, 376–384.

Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Toma, K. (2008). Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. J Strength Cond Res, 22(1), 119-127. doi:10.1519/JSC.0b013e31815f30e7

Randell, A. D., Cronin, J. B., Keogh, J. W., Gill, N. D., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. Journal of strength and conditioning research, 25(1), 87–93. https://doi.org/10.1519/JSC.0b013e3181fee634

Rodríguez-Rosell D, Y.-G. J., Mora-Custodio R, Sánchez-Medina L, Ribas-Serna J, González-Badillo JJ. (2021). Effect of velocity loss during squat training on neuromuscular performance. Scand J Med Sci Sports, 31(8), 1621-1635.

Sanchez-Medina, L., & Gonzalez-Badillo, J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sport Exerc 43, 1725-1734.

Sanchez-Moreno, M., Rodriguez-Rosell, D., Pareja-Blanco, F., Mora-Custodio, R., & Gonzalez-Badillo, J. J. (2017). Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. Int J Sports Physiol Perform, 12(10), 1378-1384. doi:10.1123/ijspp.2016-0791

Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. The Journal of Strength & Conditioning Research, 31(12), 3508-3523. doi:10.1519/jsc.0000000000002200

Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports (Basel), 9(2). doi:10.3390/sports9020032

Schoenfeld, B. J., Ogborn, D. I., & Krieger, J. W. (2015). Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med, 45(4), 577-585. doi:10.1007/s40279-015-0304-0

Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., . . . Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol, 112(10), 3585-3595. doi:10.1007/s00421-012-2339-3

Seitz, L. B., Reyes, A., Tran, T. T., Saez de Villarreal, E., & Haff, G. G. (2014). Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis. Sports Med, 44(12), 1693-1702. doi:10.1007/s40279-014-0227-1

Specker, B., Thiex, N. W., & Sudhagoni, R. G. (2015). Does Exercise Influence Pediatric Bone? A Systematic Review. Clin Orthop Relat Res, 473(11), 3658-3672. doi:10.1007/s11999-015-4467-7

Stone, W. J., & Coulter, S. P. (1994). Strength/Endurance Effects From Three Resistance Training Protocols With Women. The Journal of Strength & Conditioning Research, 8(4), 231-234. Retrieved from https://journals.lww.com/nsca-jscr/fulltext/1994/11000/strength_endurance_effects_from_three_resistance.5.aspx

Descargas

Publicado

2024-11-20

Cómo citar

Fernandez Ortega, J. A., Mendoza Romero , D.-D., & Hoyos Cuartas , L. A. . (2024). Efectos de dos tipos de entrenamiento en fuerza uno basado en la velocidad de ejecución y otro en % de 1RM sobre: la composición corporal, activación neuromuscular, y variables cinéticas y cinemáticas, en mujeres físicamente activas. Retos, 62, 979–989. https://doi.org/10.47197/retos.v62.108002

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a