El ejercicio relacionado con el IGF-1 circulante se asocia a una mejora de la memoria espacial en ratones ancianos (Circulating IGF-1 related exercise associated with improved spatial memory in elderly mice )
DOI:
https://doi.org/10.47197/retos.v60.106749Palabras clave:
IGF-1, ejercicio, envejecimiento, memoria, hipocampoResumen
Este estudio examinó la correlación entre los niveles de IGF-1 circulante e hipocampal en ratones ancianos después de una intervención de ejercicio y evaluó la relación entre los niveles de IGF-1 circulante e hipocampal en la mejora de la función de memoria espacial en ratones ancianos. Métodos: Se dividieron ratones hembra de nueve meses de edad en grupos de cinta rodante, natación y control, cada uno compuesto por diez ratones. Los ejercicios se llevaron a cabo durante seis semanas, cinco veces por semana. Antes y después del entrenamiento, se realizaron pruebas de alternancia espontánea en el laberinto en Y para evaluar la memoria de trabajo espacial. Después de seis semanas de ejercicio, se midieron los niveles de IGF-1 hipocampal y circulante mediante el método ELISA. Se realizó un ANOVA para analizar las diferencias entre los grupos. Se realizó un análisis de correlación de Pearson o Spearman para evaluar la correlación de los niveles de IGF-1 hipocampal y circulante con la memoria de trabajo espacial y la correlación entre los niveles de IGF-1 circulante y los niveles de IGF-1 hipocampal. Resultados: Los niveles de IGF-1 circulante aumentaron significativamente (p < 0.05) en los grupos de cinta rodante y natación en comparación con el control, mientras que los niveles de IGF-1 hipocampal solo aumentaron significativamente (p < 0.05) en el grupo de natación. Hubo una correlación significativa entre la memoria espacial y los niveles de IGF-1 en sangre (p = 0.002), pero no existió una correlación significativa (p = 0.122) entre la memoria espacial y los niveles de IGF-1 hipocampal. Hubo una correlación significativa entre los niveles de IGF-1 en suero y los niveles de IGF-1 hipocampal (p = 0.028). Conclusión: Los niveles de IGF-1 circulante estuvieron correlacionados con los niveles de IGF-1 hipocampal. Sin embargo, los niveles de IGF-1 hipocampal aún no han demostrado una correlación significativa con la mejora de la función de la memoria.
Palabras clave: IGF-1, ejercicio, envejecimiento, memoria, hipocampo
Abstract. This study examined the correlation between the circulating and hippocampal IGF-1 levels in elderly mice after exercise intervention and evaluated the relationship between circulating and hippocampal IGF-1 levels in improving the spatial memory function of elderly mice. Methods: Nine-month-old female mice were divided into treadmill, swimming, and control groups, each consisting of ten mice. Exercises were carried out for six weeks, five times a week. Before and after training, Y-maze spontaneous alternation tests were carried out for spatial working memory. After six weeks of exercise, hippocampal and circulating IGF-1 levels were measured with the ELISA method. ANOVA was performed to analyze differences between groups. Pearson’s or Spearman’s correlation analysis was performed to assess the correlation of hippocampal and circulating IGF-1 levels with spatial working memory and the correlation between circulating IGF-1 levels and hippocampal IGF-1 levels. Results: The circulating IGF-1 levels significantly increased (p < 0.05) in the treadmill and swimming groups compared to the control, while the hippocampal IGF-1 levels only significantly increased (p < 0.05) in the swimming group. There was a significant correlation between spatial memory and blood IGF-1 levels (p = 0.002), but no significant correlation (p = 0.122) existed between spatial memory and hippocampal IGF-1 levels. There was a significant correlation between serum IGF-1 levels and hippocampal IGF-1 levels (p = 0.028). Conclusion: Circulating IGF-1 levels were correlated with hippocampal IGF-1 levels. However, hippocampal IGF-1 levels had yet to demonstrate any significant correlation with improved memory function
Keywords: IGF-1, exercise, ageing, memory, hippocampus
Citas
Åberg, M. A. I., Åberg, N. D., Hedba, H., Oscarsson, J., & Eriksson, P. S. (2000). Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. The Journal of Neuroscience, 20(8), 2896–2903.
Adams, M. M., Elizabeth Forbes, M., Constance Linville, M., Riddle, D. R., Sonntag, W. E., & Brunso-Bechtold, J. K. (2009). Stability of local brain levels of insulin-like growth factor-I in two well-characterized models of decreased plasma IGF-I. Growth Factors, 27(3), 181–188. https://doi.org/10.1080/08977190902863639
Arjunan, A., Sah, D. K., Woo, M., & Song, J. (2023). Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell and Bioscience, 13(1), 1–18. https://doi.org/10.1186/s13578-023-00966-z
Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., Plymate, S. R., Fishel, M. A., Watson, G. S., Cholerton, B. A., Duncan, G. E., Mehta, P. D., & Craft, S. (2010). Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Archives of Neurology, 67(1), 71–79. https://doi.org/10.1001/archneurol.2009.307
Berelleza, R., Trejo, M., Borbón, J., Alarcón, E., Pineda, H., Arrayales, E., Robles, G., & Cutti, L. (2021). Effect of a strength training program on IGF-1 in older adults with obesity and controlled hypertension. Retos, 39, 253–256. https://recyt.fecyt.es/index.php/retos/article/view/74723/50836
Carro, E., Spuch, C., Trejo, J. L., Antequera, D., & Torres-Aleman, I. (2005). Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. Journal of Neuroscience, 25(47), 10884–10893. https://doi.org/10.1523/JNEUROSCI.2909-05.2005
Cassilhas, R. C., Lee, K. S., Fernandes, J., Oliveira, M. G. M., Tufik, S., Meeusen, R., & De Mello, M. T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029
Cassilhas, Ricardo C., Viana, V. A. R., Grassmann, V., Santos, R. T., Santos, R. F., Tufik, S., & Mello, M. T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine and Science in Sports and Exercise, 39(8), 1401–1407. https://doi.org/10.1249/mss.0b013e318060111f
Cetinkaya, C., Riza, A., Kiray, M., Mehmet, U., Gencoglu, C., Baykara, B., Aksu, I., & Uysal, N. (2013). Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats. Neuroscience Letters, 549, 177–181. https://doi.org/10.1016/j.neulet.2013.06.012
Habibi, P., Babri, S., Ahmadiasl, N., & Yousefi, H. (2017). Effects of genistein and swimming exercise on spatial memory and expression of microRNA 132, BDNF, and IGF-1 genes in the hippocampus of ovariectomized rats. Iranian Journal of Basic Medical Sciences, 20(10), 856–862. https://doi.org/10.22038/IJBMS.2017.9106
Kang, D. wang, Bressel, E., & Kim, D. yeon. (2020). Effects of aquatic exercise on insulin-like growth factor-1, brain-derived neurotrophic factor, vascular endothelial growth factor, and cognitive function in elderly women. Experimental Gerontology, 132, 110842. https://doi.org/10.1016/j.exger.2020.110842
Kizhakke Madathil, S., Evans, H. N., & Saatman, K. E. (2010). Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. Journal of Neurotrauma, 27(1), 95–107. https://doi.org/10.1089/neu.2009.1002
Lewitt, M. S., & Boyd, G. W. (2019). The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor–Binding Proteins in the Nervous System. Biochemistry Insights, 12, 117862641984217. https://doi.org/10.1177/1178626419842176
Llorens-martín, M., Torres-alemán, I., & Trejo, J. L. (2010). Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. Molecular and Cellular Neuroscience, 44(2), 109–117. https://doi.org/10.1016/j.mcn.2010.02.006
Marcos-Pardo, P. J., Vaquero-Cristóbal, R., & Huber, G. (2024). The Power of Resistance Training: Evidence-based Recommendations for Middle-aged and Older Women’s Health | El potencial del entrenamiento de la fuerza: recomendaciones basadas en la evidencia para la salud de las mujeres de mediana edad y mayores. Retos, 51, 319–331.
Mitschelen, M., Yan, H., Farley, J. A., Warrington, J. P., Han, S., Hereñú, B., Csiszar, A., Ungvari, Z., Bailey-downs, L. C., Bass, C. E., Sonntag, W. E., & Salem, W. (2011). Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression. Neuroscience, 1(405), 50–60. https://doi.org/10.1016/j.neuroscience.2011.04.032.Long-term
Morel, G. R., León, M. L., Uriarte, M., Reggiani, P. C., & Goya, R. G. (2017). Therapeutic potential of IGF-I on hippocampal neurogenesis and function during aging. Neurogenesis, 4(1), e1259709. https://doi.org/10.1080/23262133.2016.1259709
Niu, X., Zhao, Y., Yang, N., Zhao, X., Zhang, W., Bai, X., Li, A., Yang, W., & Lu, L. (2020). Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis. Stem Cells, 38(2), 246–260. https://doi.org/10.1002/stem.3102
Nunes, L., Souza, N. De, Vilarino, G. T., & Andrade, A. (2024). What do we know about the effects of physical exercise on dementia, without alzheimer’s? systematic review of international clinical trials. Retos, 2041, 1001–1013.
Özbeyli, D., Sarı, G., Özkan, N., Karademir, B., Yüksel, M., Çilingir Kaya, Ö. T., & Kasımay Çakır, Ö. (2017). Protective effects of different exercise modalities in an Alzheimer’s disease-like model. Behavioural Brain Research, 328, 159–177. https://doi.org/10.1016/j.bbr.2017.03.044
Papouin, T., & Haydon, P. (2018). Obtaining acute brain slices. Bio-Protocol, 8(13), 1–17. https://doi.org/10.21769/bioprotoc.2945
Picillo, M., Pivonello, R., Santangelo, G., Pivonello, C., Savastano, R., Auriemma, R., Amboni, M., Scannapieco, S., Pierro, A., Colao, A., Barone, P., & Pellecchia, M. T. (2017). Serum IGF-1 is associated with cognitive functions in early, drug-naïve Parkinson’s disease. PLoS ONE, 12(10), 1–10. https://doi.org/10.1371/journal.pone.0186508
Prieur, E. A. K., & Jadavji, N. M. (2019). Assessing Spatial Working Memory Using the Spontaneous Alternation Y- maze Test in Aged Male Mice. Bio-Protocol, 9(03), 1–10. https://doi.org/10.21769/BioProtoc.3162
Purwoto, S. P., Purwanto, B., & Liben, P. (2020). Aktivitas Fisik Akut Intensitas Tinggi Memperbaiki Kadar IL-6 Otot Model Mencit Diabetes Melitus. Jurnal Ilmiah Ilmu Kesehatan, 8(3), 416–423.
Stein, A. M., da Silva, T. M. V., Coelho, F. G. de M., Rueda, A. V., Camarini, R., & Galduróz, R. F. S. (2021). Acute exercise increases circulating IGF-1 in Alzheimer’s disease patients, but not in older adults without dementia. Behavioural Brain Research, 396(August 2020). https://doi.org/10.1016/j.bbr.2020.112903
Stein, A. M., Silva, T. M. V., Coelho, F. G. de M., Arantes, F. J., Costa, J. L. R., Teodoro, E., & Santos-Galduróz, R. F. (2018). Physical exercise, IGF-1 and cognition: A systematic review of experimental studies in the elderly. Dementia e Neuropsychologia, 12(2), 114–122. https://doi.org/10.1590/1980-57642018dn12-020003
Suryadi, D., Susanto, N., Faridah, E., Wahidi, R., Samodra, Y. T. J., Nasrulloh, A., Suganda, M. A., Dwi, I., Wati, P., Sinulingga, A., Arovah, N. I., & Dewantara, J. (2024). Exercise for health in old age : Comprehensive review examining the benefits and efficacy of interventions Ejercicio para la salud en la vejez : Revisión exhaustiva de los beneficios y la eficacia de las intervenciones Introduction Health sports are physi. Retos, 2041, 88–98.
Svensson, M., Rosvall, P., Boza-serrano, A., Andersson, E., Lexell, J., & Deierborg, T. (2016). Forced treadmill exercise can induce stress and increase neuronal damage in a mouse model of global cerebral ischemia. Neurobiology of Stress, 5, 8–18. https://doi.org/10.1016/j.ynstr.2016.09.002
Tejada Medina, V., Díaz Caro, C., González García, C., & Ruiz Montero, P. J. (2020). Physical intervention programs in older women trough the Pilates method: A systematic review. Retos, 2041(39), 1006–1016. https://doi.org/10.47197/retos.v0i39.78005
Tsai, C. L., Wang, C. H., Pan, C. Y., & Chen, F. C. (2015). The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Frontiers in Behavioral Neuroscience, 9(FEB), 1–12. https://doi.org/10.3389/fnbeh.2015.00023
Vanzella, C., Neves, J. D., Vizuete, A. F., Aristimunha, D., Kolling, J., Longoni, A., Gonçalves, C. A. S., Wyse, A. T. S., & Netto, C. A. (2017). Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behavioural Brain Research, 334(July), 78–85. https://doi.org/10.1016/j.bbr.2017.07.034
Yakar, S., & Adamo, M. L. (2012). Insulin-Like Growth Factor 1 Physiology. Lessons from Mouse Models. Endocrinology and Metabolism Clinics of North America, 41(2), 231–247. https://doi.org/10.1016/j.ecl.2012.04.008
Yakar, S., Liu, J. L. I., Stannard, B., Butler, A., Accili, D., Sauer, B., & Leroith, D. (1999). Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7324–7329. https://doi.org/10.1073/pnas.96.13.7324
Yan, H., Mitschelen, M., Bixler, G. V, Brucklacher, R. M., Farley, J. A., Han, S., Freeman, W. M., & Sonntag, W. E. (2011). Circulating IGF1 regulates hippocampal IGF1 levels and brain gene expression during adolescence. J Endocrinol, 211(1), 27–37. https://doi.org/10.1530/JOE-11-0200.Circulating
Yong, L., Liu, L., Ding, T., Yang, G., Su, H., Wang, J., Yang, M., & Chang, J. (2021). Evidence of Effect of Aerobic Exercise on Cognitive Intervention in Older Adults With Mild Cognitive Impairment. Frontiers in Psychiatry, 12(July), 1–8. https://doi.org/10.3389/fpsyt.2021.713671
Yu, Y., Kastin, A. J., & Pan, W. (2006). Reciprocal interactions of insulin and insulin-like growth factor I in receptor-mediated transport across the blood-brain barrier. Endocrinology, 147(6), 2611–2615. https://doi.org/10.1210/en.2006-0020
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess