Efecto agudo del precondicionamiento isquémico con diferentes presiones sobre el volumen de entrenamiento, el trabajo y el índice de fatiga en una sesión de miembro superior (Acute effect of ischemic preconditioning with different pressures on training volume, work, and fatigue index in an upper limb session)
DOI:
https://doi.org/10.47197/retos.v56.103207Palabras clave:
Precondicionamiento Isquémico, Entrenamiento de Fuerza, Miembros SuperioresResumen
Este estudio tuvo como objetivo evaluar los efectos agudos del precondicionamiento isquémico a diferentes presiones sobre el volumen de entrenamiento, el trabajo y el índice de fatiga durante una sesión de entrenamiento de las extremidades superiores. La muestra estuvo compuesta por 13 participantes, conformada por seis mujeres y siete hombres. Cada sujeto fue dirigido a dos sesiones de entrenamiento que incluían un press de banca y un ejercicio de remo cerrado. Ejecutaron tres series hasta el fallo concéntrico al 75% de su máximo de una repetición, con dos minutos de recuperación entre series y ejercicios. Antes de cada sesión experimental, los participantes se sometieron a cuatro ciclos de isquemia-reperfusión de cinco minutos aplicados unilateralmente y alternativamente en los brazos. En un protocolo, el punto de presión se fijó en 50 mmHg por encima de la presión arterial sistólica en reposo, mientras que en el otro se aplicó una presión fija de 220 mmHg. El protocolo de 50 mmHg condujo a un mayor trabajo (p=0,02) y volumen (p=0,01) en el ejercicio de remo cerrado y, además, resultó en un mayor trabajo general (p=0,04). Para mejorar el rendimiento de las extremidades superiores, el protocolo de 50 mmHg por encima de la presión arterial sistólica en reposo resultó más eficaz.
Palabras clave: Precondicionamiento Isquémico, Entrenamiento de Fuerza, Miembros Superiores, Volumen de Entrenamiento, Oclusión por Presión.
Abstract. This study aimed to assess the acute effects of ischemic preconditioning at varying pressures on training volume, work, and fatigue index during an upper limb workout session. The sample consisted of 13 participants, comprised of six women and seven men. Each subject was directed to two training sessions that included a bench press and a closed-row exercise. They executed three sets up to concentric failure at 75% of their one-repetition maximum, with two minutes of recovery between sets and exercises. Prior to each experimental session, participants underwent four cycles of five-minute ischemia-reperfusion applied unilaterally and alternately to the arms. In one protocol, the pressure point was set at 50 mmHg above the resting systolic blood pressure, while in the other, a fixed pressure of 220 mmHg was applied. The 50 mmHg protocol led to greater work (p=0.02) and volume (p=0.01) in the closed-row exercise, and additionally, it resulted in a higher overall work (p=0.04). For enhanced upper limb performance, the protocol of 50 mmHg above resting systolic blood pressure proved more effective.
Keywords: Ischemic Preconditioning, Strength Training, Upper Limbs, Training Volume, Pressure Occlusion.
Citas
Addison, P. D., Neligan, P. C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C. R., & Pang, C. Y. (2003). Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. American journal of physiology. Heart and circulatory physiology, 285(4), H1435–H1443. https://doi.org/10.1152/ajpheart.00106.2003
Amann, M., & Calbet, J. A. (2008). Convective oxygen transport and fatigue. Journal of applied physiology (Bethesda, Md. : 1985), 104(3), 861–870. https://doi.org/10.1152/japplphysiol.01008.2007
Bailey, T. G., Birk, G. K., Cable, N. T., Atkinson, G., Green, D. J., Jones, H., & Thijssen, D. H. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. American journal of physiology. Heart and circulatory physiology, 303(5), H533–H538. https://doi.org/10.1152/ajpheart.00272.2012
Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., & Thijssen, D. H. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine and science in sports and exercise, 44(11), 2084–2089. https://doi.org/10.1249/MSS.0b013e318262cb17
Barbosa, T. C., Machado, A. C., Braz, I. D., Fernandes, I. A., Vianna, L. C., Nobrega, A. C., & Silva, B. M. (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian journal of medicine & science in sports, 25(3), 356–364. https://doi.org/10.1111/sms.12229
Caru, M., Levesque, A., Lalonde, F., & Curnier, D. (2019). An overview of ischemic preconditioning in exercise performance: A systematic review. Journal of sport and health science, 8(4), 355–369. https://doi.org/10.1016/j.jshs.2019.01.008
Carvalho, L., & Barroso, R. (2019). Ischemic Preconditioning Improves Strength Endurance Performance. Journal of strength and conditioning research, 33(12), 3332–3337. https://doi.org/10.1519/JSC.0000000000002846
Clevidence, M. W., Mowery, R. E., & Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European journal of applied physiology, 112(10), 3649–3654. https://doi.org/10.1007/s00421-012-2345-5
Cochrane, D. J., Booker, H. R., Mundel, T., & Barnes, M. J. (2013). Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?. International journal of sports medicine, 34(11), 969–974. https://doi.org/10.1055/s-0033-1337944
Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of applied physiology (Bethesda, Md. : 1985), 111(2), 530–536. https://doi.org/10.1152/japplphysiol.00266.2011
da Silva Novaes, J., da Silva Telles, L. G., Monteiro, E. R., da Silva Araujo, G., Vingren, J. L., Silva Panza, P., Reis, V. M., Laterza, M. C., & Vianna, J. M. (2021). Ischemic Preconditioning Improves Resistance Training Session Performance. Journal of strength and conditioning research, 35(11), 2993–2998. https://doi.org/10.1519/JSC.0000000000003532
da Silva Telles, L. G., Carelli, L. C., Bráz, I. D., Junqueira, C., Monteiro, E. R., Reis, V. M., ... & da Silva Novaes, J. (2020). Effects of ischemic preconditioning as a warm-up on leg press and bench press performance. Journal of Human Kinetics, 75(1), 267-277.
da Silva Telles, L. G., Leitão, L., da Silva Araújo, G., Serra, R., Junqueira, C. G. S., Ribeiro, A., ... & da Silva Novaes, J. (2023). Remote and local ischemic preconditioning increases isometric strength and muscular endurance in recreational trained individuals. Retos: nuevas tendencias en educación física, deporte y recreación, (47), 941-947.
Dantas, P. A. M., Da Silva Novaes , J., Paz, C. R. ., Paz, N. H. ., Araújo Júnior, A. T., Lucena, P. H. M., Brito, A. T. de S., Souza , T. S. P. ., Bittar, S. T., & Cirilo-Sousa, M. do S. (2024). Efecto agudo del Precondicionamiento Isquémico en diferentes compresiones de restricción del flujo sanguíneo sobre el rendimiento anaeróbico de individuos entrenados (Acute effect of Ischemic Preconditioning in different blood flow restriction compressions on the an-aerobic performance of trained individuals). Retos, 54, 721–727. https://doi.org/10.47197/retos.v54.100539
de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European journal of applied physiology, 108(1), 141–146. https://doi.org/10.1007/s00421-009-1195-2
de Souza, H. L. R., Arriel, R. A., Hohl, R., da Mota, G. R., & Marocolo, M. (2021). Is Ischemic Preconditioning Intervention Occlusion-Dependent to Enhance Resistance Exercise Performance?. Journal of strength and conditioning research, 35(10), 2706–2712. https://doi.org/10.1519/JSC.0000000000003224
Enko, K., Nakamura, K., Yunoki, K., Miyoshi, T., Akagi, S., Yoshida, M., Toh, N., Sangawa, M., Nishii, N., Nagase, S., Kohno, K., Morita, H., Kusano, K. F., & Ito, H. (2011). Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. The journal of physiological sciences : JPS, 61(6), 507–513. https://doi.org/10.1007/s12576-011-0172-9
Lalonde, F., & Curnier, D. Y. (2015). Can anaerobic performance be improved by remote ischemic preconditioning?. Journal of strength and conditioning research, 29(1), 80–85. https://doi.org/10.1519/JSC.0000000000000609
Gorman, E., Senefeld, J., Ovrom, E., Clayburn, A., Joyner, M., Burr, J., & Wiggins, C. (2023). The association between ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Physiology, 38(S1), 5730981.
Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., McCrindle, B. W., Wells, G. D., & Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine and science in sports and exercise, 43(7), 1280–1286. https://doi.org/10.1249/MSS.0b013e318206845d
Casadio, J. R., Storey, A. G., Merien, F., Kilding, A. E., Cotter, J. D., & Laursen, P. B. (2017). Acute effects of heated resistance exercise in female and male power athletes. European journal of applied physiology, 117(10), 1965–1976. https://doi.org/10.1007/s00421-017-3671-4
Lintz, J. A., Dalio, M. B., Joviliano, E. E., & Piccinato, C. E. (2013). Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta cirurgica brasileira, 28(6), 441–446. https://doi.org/10.1590/s0102-86502013000600007
Loukogeorgakis, S. P., Panagiotidou, A. T., Broadhead, M. W., Donald, A., Deanfield, J. E., & MacAllister, R. J. (2005). Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. Journal of the American College of Cardiology, 46(3), 450–456. https://doi.org/10.1016/j.jacc.2005.04.044
Loukogeorgakis, S. P., Williams, R., Panagiotidou, A. T., Kolvekar, S. K., Donald, A., Cole, T. J., Yellon, D. M., Deanfield, J. E., & MacAllister, R. J. (2007). Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)-channel dependent mechanism. Circulation, 116(12), 1386–1395. https://doi.org/10.1161/CIRCULATIONAHA.106.653782
Marocolo, M., da Mota, G. R., Pelegrini, V., & Appell Coriolano, H. J. (2015). Are the Beneficial Effects of Ischemic Preconditioning on Performance Partly a Placebo Effect?. International journal of sports medicine, 36(10), 822–825. https://doi.org/10.1055/s-0035-1549857
Marocolo, M., Willardson, J. M., Marocolo, I. C., da Mota, G. R., Simão, R., & Maior, A. S. (2016). Ischemic Preconditioning and Placebo Intervention Improves Resistance Exercise Performance. Journal of strength and conditioning research, 30(5), 1462–1469. https://doi.org/10.1519/JSC.0000000000001232 (a)
Marocolo, M., Marocolo, I. C., da Mota, G. R., Simão, R., Maior, A. S., & Coriolano, H. J. (2016). Beneficial Effects of Ischemic Preconditioning in Resistance Exercise Fade Over Time. International journal of sports medicine, 37(10), 819–824. https://doi.org/10.1055/s-0042-109066 (b)
Miranda, H., Figueiredo, T., Rodrigues, B., Paz, G. A., & Simão, R. (2013). Influence of exercise order on repetition performance among all possible combinations on resistance training. Research in Sports Medicine, 21(4), 355-366.
Mouser, J. G., Ade, C. J., Black, C. D., Bemben, D. A., & Bemben, M. G. (2018). Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion. Clinical physiology and functional imaging, 38(3), 425-430.
Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136.
Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular research, 29(6), 782-788.
Paz, G. A., Leite, T., Maia, M. D. F., Lima, A. F., Coelho, P. P., & Miranda, H. (2013). Influence of rest interval between stretching and resistance training. ConScientiae Saúde, 12(3).
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied physiology, nutrition, and metabolism, 41(9), 938-944.
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2017). Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Frontiers in physiology, 7, 233289.
Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A., & Whittaker, P. (1993). Regional ischemic'preconditioning'protects remote virgin myocardium from subsequent sustained coronary occlusion. circulation, 87(3), 893-899.
Paixao, R. C., da Mota, G. R., & Marocolo, M. (2014). Acute effect of ischemic preconditioning is detrimental to anaerobic performance in cyclists. International journal of sports medicine, 912-915.
Sharma, V., Cunniffe, B., Verma, A. P., Cardinale, M., & Yellon, D. (2014). Characterization of acute ischemia‐related physiological responses associated with remote ischemic preconditioning: a randomized controlled, crossover human study. Physiological reports, 2(11), e12200.
Simao, R., De Salles, B. F., Figueiredo, T., Dias, I., & Willardson, J. M. (2012). Exercise order in resistance training. Sports medicine, 42, 251-265.
Simão, R., Spineti, J., de Salles, B. F., Matta, T., Fernandes, L., Fleck, S. J., ... & Strom-Olsen, H. E. (2012). Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. The Journal of strength & conditioning research, 26(5), 1389-1395.
Tanaka, D., Suga, T., Tanaka, T., Kido, K., Honjo, T., Fujita, S., ... & Isaka, T. (2016). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. International journal of sports medicine, 614-618.
Telles, L. G., Billaut, F., de Souza Ribeiro, A., Junqueira, C. G., Leitão, L., Barreto, A. C., ... & da Silva Novaes, J. (2022). Ischemic preconditioning with high and low pressure enhances maximum strength and modulates heart rate variability. International Journal of Environmental Research and Public Health, 19(13), 7655.
Wang, W. Z., Stepheson, L. L., Fang, X. H., Khiabani, K. T., & Zamboni, W. A. (2004). Ischemic preconditioning-induced microvascular protection at a distance. Journal of reconstructive microsurgery, 20(02), 175-181.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess