Autoconcepto físico en estudiantes universitarios: Generación de perfiles por clasificación jerárquica sobre componentes principales (Physical self-concept in university students: Generating profiles with hierarchical classification on principal components)
DOI:
https://doi.org/10.47197/retos.v48.95076Palabras clave:
Autoconcepto físico, autoimagen, habilidad deportiva, deporte, psicologíaResumen
Los objetivos del presente estudio fueron i) analizar y comparar el autoconcepto físico en estudiantes universitarios considerando posibles diferencias entre sexos y asociaciones con el estrato socioeconómico y la edad, y ii) generar perfiles de los estudiantes utilizando algoritmos de aprendizaje automático no supervisado. Un total de 230 estudiantes colombianos entre los 18 y 38 años pertenecientes a programas académicos de Educación Física (n = 118) y Psicología (n = 112) participaron en este estudio transversal. Se aplicó el cuestionario de autoconcepto físico (PSQ). Se hallaron diferencias significativas entre hombres y mujeres. No se encontraron diferencias en el autoconcepto físico entre los hombres de los programas académicos; sin embargo, los valores de las mujeres fueron significativamente diferentes entre los dos programas (p< .05). Se evidenció una asociación inversa baja entre el autoconcepto físico y el estrato socioeconómico y la edad. Luego del análisis de agrupación jerárquica sobre componentes principales, se identificaron dos perfiles estadísticamente diferentes con tamaño del efecto grande para el autoconcepto físico y todos sus dominios (Perfil 1 [n = 138] versus Perfil 2 [n = 92]; p< .05; η2< .45). Aunque el autoconcepto físico contribuyó en mayor medida al componente principal, con valores mayores para el perfil 2, el ≈73% de las mujeres (n = 101) se agruparon en el perfil 1 y hubo una mayor cantidad de estudiantes de Psicología (85/112) que de Educación Física (27/118) en el perfil 2. Los resultados muestran comportamientos diferentes del autoconcepto físico entre hombres y mujeres de los dos programas académicos. Los perfiles generados podrían ayudar a universidades, orientadores y profesores a planear intervenciones dentro de las instituciones para favorecer el desarrollo del autoconcepto físico a la vez que se evalúan otras asociaciones potenciales.
Palabras clave: Autoconcepto físico, universitarios, educación física, psicología, aprendizaje automático no supervisado
Abstract. The aims of this study were i) to analyze and compare the physical self-concept in university students considering possible differences between sexes and associations with socioeconomic status and age, and ii) to generate student profiles using unsupervised machine learning algorithms. A total of 230 Colombian students between 18 and 38 years of age from the Physical Education (n = 118) and Psychology (n = 112) majors participated in this cross-sectional study. The physical self-concept questionnaire (PSQ) was applied. Significant differences were found between men and women. No differences were found in physical self-concept among men in the academic programs; however, women's values were significantly different between the two programs (p< .05). A low inverse association was evident between physical self-concept and socioeconomic stratum and age. Following hierarchical clustering analysis on principal components, two statistically different profiles with large effect sizes were identified (Profile 1 [n = 138] versus Profile 2 [n = 92]; p< .05; η2< .45). Although physical self-concept contributed most to the principal component, with higher values for profile 2, ≈73% of females (n = 101) were clustered in profile 1 and there were a greater number of Psychology (85/112) than Physical Education (27/118) students in profile 2. The results show different behaviors of physical self-concept between men and women in the two academic programs, so the profiles generated could help universities, counselors and professors to plan interventions within the institutions to favor its development while evaluating other potential associations.
Keywords: Physical self-concept, college students, physical education, psychology, unsupervised machine learning
Citas
American College of Sports Medicine (2018). ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer.
American Diabetes Association (2013). Standards of medical care in diabetes - 2013. Diabetes Care, 36(Suppl), 11-66. https://doi.org/10.2337/dc13-S011
Arietanizbeaskoa, M. S., Gil-Rey, E., Mendizabal Gallastegui, N., Garcia-Álvarez, A., De la Fuente, I., Domínguez-Martínez, S., Pablo, S., Coca, A., Gutierrez-Santamaría, B. & Grandes, G. (2020). Implementing exercise in standard cancer care (Bizi Orain hybrid exercise program): protocol for a randomized controlled trial. JMIR Research Protocols, 10, e24835.
Barua, R., Templeton, A. J., Seruga, B., Ocana, A., Amir, E., & Ethier, J. L. (2018). Hyperglycaemia and survival in solid tumours: a systematic review and meta-analysis. Clinical Oncology, 30(4), 215–224. https://doi.org/10.1016/j.clon.2018.01.003
Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 (Physical activity and cancer: a bibliographic review 2016-2021). Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728
Biolaster (n. d.). Quo-Lab Analizador Hemoglobina Glicosilada. https://www.biolaster.com/productos/Analizador-de-Hemoglobina/Quo-Lab-Analizador-Hemoglobina-Glicosidada/
Boniol, M., Dragomir, M., Autier, P., & Boyle, P. (2017). Physical activity and change in fasting glucose and HbA1c: a quantitative meta-analysis of randomized trials. Acta Diabetologica, 54(11), 983-991. https://doi.org/10.1016/j.clon.2018.01.003
Bourke, L., Stevenson, R., Turner, R., Hooper, R., Sasieni, P., Greasley, R., Morrissey, D., Loosemore, M., Fisher, A., Payne, H., Taylor, S. J. C., & Rosario, D. J. (2018). Exercise training as a novel primary treatment for localised pros-tate cancer: a multi-site randomised controlled phase II study. Scientific Reports, 8(1), 8374. https://doi.org/10.1038/s41598-018-26682-0
Cavero-Redondo, I., Peleteiro, B., Álvarez-Bueno, C., Artero, E. G., Garrido-Miguel, M., & Martinez-Vizcaíno, V. (2018). The effect of physical activity interventions on glycosylated haemoglobin (HbA1c) in non-diabetic populations: a systematic review and meta-analysis. Sports Medicine, 48(5), 1151-1164. https://doi.org/10.1016/j.clon.2018.01.003
Cigarroa, I., Díaz, E., Ortiz, C., Otero, R., Cantarero, I., Petermann-Rocha, F., Parra-Soto, S., Zapata-Lamana, R., & Toloza-Ramírez, D. (2022). Características y efectos de los programas de ejercicio físico para personas mayores sobre-vivientes de cáncer: Una revisión de alcance (Characteristics and effects of physical exercise programs for older cancer survivors: A scoping review). Retos, 44, 370–385. https://doi.org/10.47197/retos.v44i0.90843
Christensen, J. F., Sundberg, A., Osterkamp, J., Thorsen-Streit, S., Nielsen, A. B., Olsen, C. K., Djurhuus, S. S., Simon-sen, C., Schauer, T., Ellingsgaard, H., Østerlind, K., Krarup, P. M., Mosgaard, C., Vistisen, K., Tolver, A., Pedersen, B. K. & Hojman, P. (2019). Interval walking improves glycemic control and body composition after cancer treatment: a randomized controlled trial. The Journal of Clinical Endocrinololgy & Metabolism, 104(9), 3701–3712. https://doi.org/10.1210/jc.2019-00590
De Beer, J. C., & Liebenberg, L. (2014). Does cancer risk increase with HbA1c, independent of diabetes? British Journal of Cancer, 110(9), 2361-2368. https://doi.org/10.1210/jc.2019-00590
Dieli-Conwright, C. M., Courneya, K. S., Demark-Wahnefried, W., Sami, N., Lee, K., Sweeney, F. C., Stewart, C., Buchanan, T. A., Spicer, D., Tripathy, D., Bernstein, L., & Mortimer, J. E. (2018a). Aerobic and resistance exercise improves physical fitness, bone health, and quality of life in overweight and obese breast cancer survivors: a randomized controlled trial. Breast Cancer Research, 20(1), 124. https://doi.org/10.1186/s13058-018-1051-6
Dieli-Conwright, C. M., Parmentier, J. H., Sami, N., Lee, K., Spicer, D., Mack, W. J., Sattler F., & Mittelman, S. D. (2018b). Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Research Treatment, 168(1), 147-157. https://doi.org/10.1007/s10549-017-4576-y
Global Cancer Observatory (2020). Cancer Tomorrow. Lyon: International Agency for Research on Cancer. https://gco.iarc.fr/tomorrow/en/dataviz/bars?mode=population&years=2030&types=1
Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 (Physical activity and cancer: a bibliographic review 2016-2021). Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728
Guinan, E., Hussey, J., Broderick, J. M., Lithander, F. E., O'Donnell, D., Kennedy, M. J., & Connolly, E. M. (2013). The effect of aerobic exercise on metabolic and inflammatory markers in breast cancer survivors-a pilot study. Supportive Care in Cancer, 21(7), 1983–1992. https://doi.org/10.1007/s00520-013-1743-5
Hope, C., Robertshaw, A., Cheung, K. L., Idris, I., & English, E. (2016). Relationship between HbA1c and cancer in peo-ple with or without diabetes: a systematic review. Diabetic Medicine, 33(8), 1013-1025.
InBody (2014). InBody 770. https://www.composicion-corporal-inbody.com/InBody-770.html
Iyengar, N. M., & Jones, L. W. (2019). Development of exercise as interception therapy for cancer: a review. JAMA Oncolo-gy, 5(11), 1620-1627. https://doi.org/10.1001/jamaoncol.2019.2585
Kang, D. W., Lee, E. Y., An, K. Y., Min, J., Jeon, J. Y., & Courneya, K. S. (2018). Associations between physical activity and comorbidities in Korean cancer survivors. Journal of Cancer Survivorship, 12(4), 441-449. https://doi.org/10.1007/s00520-013-1743-5
Kang, X. Y., Xu, Q. Y., Yu, Z., Han, S. F., Zhu, Y. F., & Lv, X. (2020). The effects of physical activity on physiological markers in breast cancer survivors: a meta-analysis. Medicine, 99(20), e20231. https://doi.org/10.1007/s00520-013-1743-5
Ling, C. H., de Craen, A. J., Slagboom, P. E., Gunn, D. A., Stokkel, M. P., Westendorp, R. G., & Maier, A. B. (2011). Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clinical Nutrition, 30(5), 610–615. https://doi.org/10.1016/j.clnu.2011.04.001
Masuch, A., Friedrich, N., Roth, J., Nauck, M., Müller, U. A., & Petersmann, A. (2019). Preventing misdiagnosis of dia-betes in the elderly: age-dependent HbA1c reference intervals derived from two population-based study cohorts. BMC Endocrine Disorders, 19(20). https://doi.org/10.1016/j.clnu.2011.04.001
Matthews, C. E., Moore, S. C., Arem, H., Cook, M. B., Trabert, B., Håkansson, N., Larsson, S. C., Wolk, A., Gapstur, S. M., Lynch, B. M., Milne, R. L., Freedman, N. D., Huang, W., Berrington de Gonzalez, A., Kitahara, C. M., Linet, M. S., Shiroma, E. J., Sandin, S., Patel, A. V., & Lee, I. (2019). Amount and intensity of leisure-time physical activity and lower cancer risk. Journal of Clinical Oncology, 38(7), 686-697. https://doi.org/10.1200/JCO.19.02407
McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Fisiología del Ejercicio: Nutrición, Rendimiento y Salud. Spain: Wolters Kluwer Health.
Raun, S. H., Buch-Larsen, K., Schwarz, P., & Sylow, L. (2021). Exercise - A panacea of metabolic dysregulation in cancer: physiological and molecular insights. International Journal of Molecular Sciences, 22(7), 3469. https://doi.org/10.3390/ijms22073469
Río, X., González-Pérez, A., Larrinaga-Undabarrena, A., & Coca, A. (2020). Analysis of quality of life parameters in a health-promoting program for a population with cardiovascular risk factors: a preliminary study. SN Comprehensive Clini-cal Medicine, 2, 2221–2229. https://doi.org/10.1007/s42399-020-00512-9
Rodwell, V. W., Bender, D. A., Botham, K. M., Kennelly, P. J., & Weil, P. A. (2016). Harper bioquímica ilustrada. McGraw-Hill Interamericana Editores.
Sanchez, A., Grandes, G., Cortada, J. M., Pombo, H., Balague, L., & Calderon, C. (2009). Modelling innovative interven-tions for optimising healthy lifestyle promotion in primary health care: "Prescribe Vida Saludable" phase I research pro-tocol. BMC Health Services Research, 9(103). https://doi.org/10.1186/1472-6963-9-103
Schmidt, T., Schwarz, M., Van Mackelenbergh, M., Jonat, W., Weisser, B., Röcken, C., & Mundhenke, C. (2017). Feasi-bility study to evaluate compliance of physical activity over a long time period and its influence on the total activity score, glucose metabolism and physical and psychological parameters following breast cancer. Molecular and Clinical On-cology, 6(3), 397-402. https://doi.org/10.3892/mco.2017.1144
Sénéchal, M., Swift, D. L., Johannsen, N. M., Blair, S. N., Earnest, C. P., Lavie, C. J., & Church, T. S. (2013). Changes in body fat distribution and fitness are associated with changes in hemoglobin A1c after 9 months of exercise training: re-sults from the HART-D study. Diabetes Care, 36(9), 2843–2849. https://doi.org/10.2337/dc12-2428
Singh, B., Hayes, S. C., Spence, R. R., Steele, M. L., Millet, G. Y., & Gergele, L. (2020). Exercise and colorectal cancer: a systematic review and meta-analysis of exercise safety, feasibility and effectiveness. International Journal of Behavioral Nutrition and Physical Activity, 17(122). https://doi.org/10.2337/dc12-2428
Sjøberg, K. A., Frøsig, C., Kjøbsted, R., Sylow, L., Kleinert, M., Betik, A. C., Shaw, C. S., Kiens, B., Wojtaszewski, J., Rattigan, S., Richter, E. A., & McConell, G. K. (2017). Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes, 66(6), 1501–1510. https://doi.org/10.2337/db16-1327
Wang, Y., Jin, B., Paxton, R. J., Yang, W., Wang, X., Jiao, Y., Yu, C., & Chen, X. (2020).The effects of exercise on insulin, glucose, IGF-axis and CRP in cancer survivors: meta-analysis and meta-regression of randomized controlled tri-als. European Journal of Cancer Care, 29(1), e13186. https://doi.org/10.1111/ecc.13186
World Health Organization (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.
World Health Organization (2021). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess