Physical self-concept in university students: Generating profiles with hierarchical classification on principal components
DOI:
https://doi.org/10.47197/retos.v48.95076Keywords:
Physical self-concept, self-image, athletic ability, sport, psychologyAbstract
The aims of this study were i) to analyze and compare the physical self-concept in university students considering possible differences between sexes and associations with socioeconomic status and age, and ii) to generate student profiles using unsupervised machine learning algorithms. A total of 230 Colombian students between 18 and 38 years of age from the Physical Education (n = 118) and Psychology (n = 112) majors participated in this cross-sectional study. The physical self-concept questionnaire (PSQ) was applied. Significant differences were found between men and women. No differences were found in physical self-concept among men in the academic programs; however, women's values were significantly different between the two programs (p< .05). A low inverse association was evident between physical self-concept and socioeconomic stratum and age. Following hierarchical clustering analysis on principal components, two statistically different profiles with large effect sizes were identified (Profile 1 [n = 138] versus Profile 2 [n = 92]; p< .05; η2< .45). Although physical self-concept contributed most to the principal component, with higher values for profile 2, ≈73% of females (n = 101) were clustered in profile 1 and there were a greater number of Psychology (85/112) than Physical Education (27/118) students in profile 2. The results show different behaviors of physical self-concept between men and women in the two academic programs, so the profiles generated could help universities, counselors and professors to plan interventions within the institutions to favor its development while evaluating other potential associations.
Keywords: Physical self-concept, college students, physical education, psychology, unsupervised machine learning
References
American College of Sports Medicine (2018). ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer.
American Diabetes Association (2013). Standards of medical care in diabetes - 2013. Diabetes Care, 36(Suppl), 11-66. https://doi.org/10.2337/dc13-S011
Arietanizbeaskoa, M. S., Gil-Rey, E., Mendizabal Gallastegui, N., Garcia-Álvarez, A., De la Fuente, I., Domínguez-Martínez, S., Pablo, S., Coca, A., Gutierrez-Santamaría, B. & Grandes, G. (2020). Implementing exercise in standard cancer care (Bizi Orain hybrid exercise program): protocol for a randomized controlled trial. JMIR Research Protocols, 10, e24835.
Barua, R., Templeton, A. J., Seruga, B., Ocana, A., Amir, E., & Ethier, J. L. (2018). Hyperglycaemia and survival in solid tumours: a systematic review and meta-analysis. Clinical Oncology, 30(4), 215–224. https://doi.org/10.1016/j.clon.2018.01.003
Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 (Physical activity and cancer: a bibliographic review 2016-2021). Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728
Biolaster (n. d.). Quo-Lab Analizador Hemoglobina Glicosilada. https://www.biolaster.com/productos/Analizador-de-Hemoglobina/Quo-Lab-Analizador-Hemoglobina-Glicosidada/
Boniol, M., Dragomir, M., Autier, P., & Boyle, P. (2017). Physical activity and change in fasting glucose and HbA1c: a quantitative meta-analysis of randomized trials. Acta Diabetologica, 54(11), 983-991. https://doi.org/10.1016/j.clon.2018.01.003
Bourke, L., Stevenson, R., Turner, R., Hooper, R., Sasieni, P., Greasley, R., Morrissey, D., Loosemore, M., Fisher, A., Payne, H., Taylor, S. J. C., & Rosario, D. J. (2018). Exercise training as a novel primary treatment for localised pros-tate cancer: a multi-site randomised controlled phase II study. Scientific Reports, 8(1), 8374. https://doi.org/10.1038/s41598-018-26682-0
Cavero-Redondo, I., Peleteiro, B., Álvarez-Bueno, C., Artero, E. G., Garrido-Miguel, M., & Martinez-Vizcaíno, V. (2018). The effect of physical activity interventions on glycosylated haemoglobin (HbA1c) in non-diabetic populations: a systematic review and meta-analysis. Sports Medicine, 48(5), 1151-1164. https://doi.org/10.1016/j.clon.2018.01.003
Cigarroa, I., Díaz, E., Ortiz, C., Otero, R., Cantarero, I., Petermann-Rocha, F., Parra-Soto, S., Zapata-Lamana, R., & Toloza-Ramírez, D. (2022). Características y efectos de los programas de ejercicio físico para personas mayores sobre-vivientes de cáncer: Una revisión de alcance (Characteristics and effects of physical exercise programs for older cancer survivors: A scoping review). Retos, 44, 370–385. https://doi.org/10.47197/retos.v44i0.90843
Christensen, J. F., Sundberg, A., Osterkamp, J., Thorsen-Streit, S., Nielsen, A. B., Olsen, C. K., Djurhuus, S. S., Simon-sen, C., Schauer, T., Ellingsgaard, H., Østerlind, K., Krarup, P. M., Mosgaard, C., Vistisen, K., Tolver, A., Pedersen, B. K. & Hojman, P. (2019). Interval walking improves glycemic control and body composition after cancer treatment: a randomized controlled trial. The Journal of Clinical Endocrinololgy & Metabolism, 104(9), 3701–3712. https://doi.org/10.1210/jc.2019-00590
De Beer, J. C., & Liebenberg, L. (2014). Does cancer risk increase with HbA1c, independent of diabetes? British Journal of Cancer, 110(9), 2361-2368. https://doi.org/10.1210/jc.2019-00590
Dieli-Conwright, C. M., Courneya, K. S., Demark-Wahnefried, W., Sami, N., Lee, K., Sweeney, F. C., Stewart, C., Buchanan, T. A., Spicer, D., Tripathy, D., Bernstein, L., & Mortimer, J. E. (2018a). Aerobic and resistance exercise improves physical fitness, bone health, and quality of life in overweight and obese breast cancer survivors: a randomized controlled trial. Breast Cancer Research, 20(1), 124. https://doi.org/10.1186/s13058-018-1051-6
Dieli-Conwright, C. M., Parmentier, J. H., Sami, N., Lee, K., Spicer, D., Mack, W. J., Sattler F., & Mittelman, S. D. (2018b). Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Research Treatment, 168(1), 147-157. https://doi.org/10.1007/s10549-017-4576-y
Global Cancer Observatory (2020). Cancer Tomorrow. Lyon: International Agency for Research on Cancer. https://gco.iarc.fr/tomorrow/en/dataviz/bars?mode=population&years=2030&types=1
Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 (Physical activity and cancer: a bibliographic review 2016-2021). Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728
Guinan, E., Hussey, J., Broderick, J. M., Lithander, F. E., O'Donnell, D., Kennedy, M. J., & Connolly, E. M. (2013). The effect of aerobic exercise on metabolic and inflammatory markers in breast cancer survivors-a pilot study. Supportive Care in Cancer, 21(7), 1983–1992. https://doi.org/10.1007/s00520-013-1743-5
Hope, C., Robertshaw, A., Cheung, K. L., Idris, I., & English, E. (2016). Relationship between HbA1c and cancer in peo-ple with or without diabetes: a systematic review. Diabetic Medicine, 33(8), 1013-1025.
InBody (2014). InBody 770. https://www.composicion-corporal-inbody.com/InBody-770.html
Iyengar, N. M., & Jones, L. W. (2019). Development of exercise as interception therapy for cancer: a review. JAMA Oncolo-gy, 5(11), 1620-1627. https://doi.org/10.1001/jamaoncol.2019.2585
Kang, D. W., Lee, E. Y., An, K. Y., Min, J., Jeon, J. Y., & Courneya, K. S. (2018). Associations between physical activity and comorbidities in Korean cancer survivors. Journal of Cancer Survivorship, 12(4), 441-449. https://doi.org/10.1007/s00520-013-1743-5
Kang, X. Y., Xu, Q. Y., Yu, Z., Han, S. F., Zhu, Y. F., & Lv, X. (2020). The effects of physical activity on physiological markers in breast cancer survivors: a meta-analysis. Medicine, 99(20), e20231. https://doi.org/10.1007/s00520-013-1743-5
Ling, C. H., de Craen, A. J., Slagboom, P. E., Gunn, D. A., Stokkel, M. P., Westendorp, R. G., & Maier, A. B. (2011). Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clinical Nutrition, 30(5), 610–615. https://doi.org/10.1016/j.clnu.2011.04.001
Masuch, A., Friedrich, N., Roth, J., Nauck, M., Müller, U. A., & Petersmann, A. (2019). Preventing misdiagnosis of dia-betes in the elderly: age-dependent HbA1c reference intervals derived from two population-based study cohorts. BMC Endocrine Disorders, 19(20). https://doi.org/10.1016/j.clnu.2011.04.001
Matthews, C. E., Moore, S. C., Arem, H., Cook, M. B., Trabert, B., Håkansson, N., Larsson, S. C., Wolk, A., Gapstur, S. M., Lynch, B. M., Milne, R. L., Freedman, N. D., Huang, W., Berrington de Gonzalez, A., Kitahara, C. M., Linet, M. S., Shiroma, E. J., Sandin, S., Patel, A. V., & Lee, I. (2019). Amount and intensity of leisure-time physical activity and lower cancer risk. Journal of Clinical Oncology, 38(7), 686-697. https://doi.org/10.1200/JCO.19.02407
McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Fisiología del Ejercicio: Nutrición, Rendimiento y Salud. Spain: Wolters Kluwer Health.
Raun, S. H., Buch-Larsen, K., Schwarz, P., & Sylow, L. (2021). Exercise - A panacea of metabolic dysregulation in cancer: physiological and molecular insights. International Journal of Molecular Sciences, 22(7), 3469. https://doi.org/10.3390/ijms22073469
Río, X., González-Pérez, A., Larrinaga-Undabarrena, A., & Coca, A. (2020). Analysis of quality of life parameters in a health-promoting program for a population with cardiovascular risk factors: a preliminary study. SN Comprehensive Clini-cal Medicine, 2, 2221–2229. https://doi.org/10.1007/s42399-020-00512-9
Rodwell, V. W., Bender, D. A., Botham, K. M., Kennelly, P. J., & Weil, P. A. (2016). Harper bioquímica ilustrada. McGraw-Hill Interamericana Editores.
Sanchez, A., Grandes, G., Cortada, J. M., Pombo, H., Balague, L., & Calderon, C. (2009). Modelling innovative interven-tions for optimising healthy lifestyle promotion in primary health care: "Prescribe Vida Saludable" phase I research pro-tocol. BMC Health Services Research, 9(103). https://doi.org/10.1186/1472-6963-9-103
Schmidt, T., Schwarz, M., Van Mackelenbergh, M., Jonat, W., Weisser, B., Röcken, C., & Mundhenke, C. (2017). Feasi-bility study to evaluate compliance of physical activity over a long time period and its influence on the total activity score, glucose metabolism and physical and psychological parameters following breast cancer. Molecular and Clinical On-cology, 6(3), 397-402. https://doi.org/10.3892/mco.2017.1144
Sénéchal, M., Swift, D. L., Johannsen, N. M., Blair, S. N., Earnest, C. P., Lavie, C. J., & Church, T. S. (2013). Changes in body fat distribution and fitness are associated with changes in hemoglobin A1c after 9 months of exercise training: re-sults from the HART-D study. Diabetes Care, 36(9), 2843–2849. https://doi.org/10.2337/dc12-2428
Singh, B., Hayes, S. C., Spence, R. R., Steele, M. L., Millet, G. Y., & Gergele, L. (2020). Exercise and colorectal cancer: a systematic review and meta-analysis of exercise safety, feasibility and effectiveness. International Journal of Behavioral Nutrition and Physical Activity, 17(122). https://doi.org/10.2337/dc12-2428
Sjøberg, K. A., Frøsig, C., Kjøbsted, R., Sylow, L., Kleinert, M., Betik, A. C., Shaw, C. S., Kiens, B., Wojtaszewski, J., Rattigan, S., Richter, E. A., & McConell, G. K. (2017). Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes, 66(6), 1501–1510. https://doi.org/10.2337/db16-1327
Wang, Y., Jin, B., Paxton, R. J., Yang, W., Wang, X., Jiao, Y., Yu, C., & Chen, X. (2020).The effects of exercise on insulin, glucose, IGF-axis and CRP in cancer survivors: meta-analysis and meta-regression of randomized controlled tri-als. European Journal of Cancer Care, 29(1), e13186. https://doi.org/10.1111/ecc.13186
World Health Organization (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.
World Health Organization (2021). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Retos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.