Physical self-concept in university students: Generating profiles with hierarchical classification on principal components

Authors

  • Luis Alberto Cardozo Grupo de Investigación y Medición en Entrenamiento Deportivo (IMED), Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, Colombia https://orcid.org/0000-0001-8076-3304
  • Jhonatan C. Peña-Ibagón Grupo de Investigación y Medición en Entrenamiento Deportivo (IMED), Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, Colombia https://orcid.org/0000-0002-0580-8151
  • Widad Florez-Escobar
  • Carlos A. Castillo-Daza Grupo de Investigación y Medición en Entrenamiento Deportivo (IMED), Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, Colombia https://orcid.org/0000-0002-7608-7320
  • Diego A. Bonilla-Ocampo Research Division, Dynamical Business & Science Society - DBSS International SAS, Bogotá, Colombia. https://orcid.org/0000-0002-2634-1220
  • Javier L. Reina-Monroy Corporación Universitaria Minuto de Dios - UVD, Grupo de investigación Cuerpo, Deporte y Recreación GICDER https://orcid.org/0000-0002-3493-9361

DOI:

https://doi.org/10.47197/retos.v48.95076

Keywords:

Physical self-concept, self-image, athletic ability, sport, psychology

Abstract

The aims of this study were i) to analyze and compare the physical self-concept in university students considering possible differences between sexes and associations with socioeconomic status and age, and ii) to generate student profiles using unsupervised machine learning algorithms. A total of 230 Colombian students between 18 and 38 years of age from the Physical Education (n = 118) and Psychology (n = 112) majors participated in this cross-sectional study. The physical self-concept questionnaire (PSQ) was applied. Significant differences were found between men and women. No differences were found in physical self-concept among men in the academic programs; however, women's values were significantly different between the two programs (p< .05). A low inverse association was evident between physical self-concept and socioeconomic stratum and age. Following hierarchical clustering analysis on principal components, two statistically different profiles with large effect sizes were identified (Profile 1 [n = 138] versus Profile 2 [n = 92]; p< .05; η2< .45). Although physical self-concept contributed most to the principal component, with higher values for profile 2, ≈73% of females (n = 101) were clustered in profile 1 and there were a greater number of Psychology (85/112) than Physical Education (27/118) students in profile 2. The results show different behaviors of physical self-concept between men and women in the two academic programs, so the profiles generated could help universities, counselors and professors to plan interventions within the institutions to favor its development while evaluating other potential associations.

Keywords: Physical self-concept, college students, physical education, psychology, unsupervised machine learning

Author Biographies

Luis Alberto Cardozo , Grupo de Investigación y Medición en Entrenamiento Deportivo (IMED), Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, Colombia

Lider de Investigación Formativa, Programa Profesional en Entrenamiento Deportivo. Fundación Universitaria del Área Andina, Bogotá, D.C.

Docente Investigador en la Corporación Universitaria Minuto de Dios - Uniminuto, Facultad de Educación Física, Recreación y Deporte.

Jhonatan C. Peña-Ibagón , Grupo de Investigación y Medición en Entrenamiento Deportivo (IMED), Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, Colombia

Lider del Grupo de Investigación IMED

Investigador Asociado Minciencias

Widad Florez-Escobar

Profesional Psicologa 

Carlos A. Castillo-Daza , Grupo de Investigación y Medición en Entrenamiento Deportivo (IMED), Facultad de Ciencias de la Salud y del Deporte, Fundación Universitaria del Área Andina, Bogotá, Colombia

Director de Laboratorios Biomedicos - Facultad de Ciencias de la Salud y del Deporte

Ingeniero Biomédico

Diego A. Bonilla-Ocampo , Research Division, Dynamical Business & Science Society - DBSS International SAS, Bogotá, Colombia.

cPhD. Molecular Biology & Biomedicine, cMSc. Information Sciences (Engineering Faculty UD), Anthropometrist Level 3 ISAK (Instructor), Diploma Course in Analysis and Interpretation of Bioinformatics Data in Health, Certification Course in "Bioinformatics; Computer Methods in Molecular and Systems Biology", MSc. Nutrition & Dietetics, Specialization Certificate in Systems Biology, Diploma Course in “Computational and Structural Biology”, Bachelor in Chemistry & Chemical Technical Analyst. Experience in both Wet and Dry Lab, knowledge in programming languages (Linux, R & MATLAB). Interested in the analysis and modeling of adaptation processes and adaptive biology. Co-author and contributor in the books: Creatine; Biosynthesis, Health Effects and Clinical Perspectives (2017), Principios del Ejercicio y la Nutrición Deportiva: de la Ciencia a la Práctica (2019) and Advances in Ketogenic Diet (2019).

References

American College of Sports Medicine (2018). ACSM’s guidelines for exercise testing and prescription. Philadelphia: Wolters Kluwer.

American Diabetes Association (2013). Standards of medical care in diabetes - 2013. Diabetes Care, 36(Suppl), 11-66. https://doi.org/10.2337/dc13-S011

Arietanizbeaskoa, M. S., Gil-Rey, E., Mendizabal Gallastegui, N., Garcia-Álvarez, A., De la Fuente, I., Domínguez-Martínez, S., Pablo, S., Coca, A., Gutierrez-Santamaría, B. & Grandes, G. (2020). Implementing exercise in standard cancer care (Bizi Orain hybrid exercise program): protocol for a randomized controlled trial. JMIR Research Protocols, 10, e24835.

Barua, R., Templeton, A. J., Seruga, B., Ocana, A., Amir, E., & Ethier, J. L. (2018). Hyperglycaemia and survival in solid tumours: a systematic review and meta-analysis. Clinical Oncology, 30(4), 215–224. https://doi.org/10.1016/j.clon.2018.01.003

Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 (Physical activity and cancer: a bibliographic review 2016-2021). Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728

Biolaster (n. d.). Quo-Lab Analizador Hemoglobina Glicosilada. https://www.biolaster.com/productos/Analizador-de-Hemoglobina/Quo-Lab-Analizador-Hemoglobina-Glicosidada/

Boniol, M., Dragomir, M., Autier, P., & Boyle, P. (2017). Physical activity and change in fasting glucose and HbA1c: a quantitative meta-analysis of randomized trials. Acta Diabetologica, 54(11), 983-991. https://doi.org/10.1016/j.clon.2018.01.003

Bourke, L., Stevenson, R., Turner, R., Hooper, R., Sasieni, P., Greasley, R., Morrissey, D., Loosemore, M., Fisher, A., Payne, H., Taylor, S. J. C., & Rosario, D. J. (2018). Exercise training as a novel primary treatment for localised pros-tate cancer: a multi-site randomised controlled phase II study. Scientific Reports, 8(1), 8374. https://doi.org/10.1038/s41598-018-26682-0

Cavero-Redondo, I., Peleteiro, B., Álvarez-Bueno, C., Artero, E. G., Garrido-Miguel, M., & Martinez-Vizcaíno, V. (2018). The effect of physical activity interventions on glycosylated haemoglobin (HbA1c) in non-diabetic populations: a systematic review and meta-analysis. Sports Medicine, 48(5), 1151-1164. https://doi.org/10.1016/j.clon.2018.01.003

Cigarroa, I., Díaz, E., Ortiz, C., Otero, R., Cantarero, I., Petermann-Rocha, F., Parra-Soto, S., Zapata-Lamana, R., & Toloza-Ramírez, D. (2022). Características y efectos de los programas de ejercicio físico para personas mayores sobre-vivientes de cáncer: Una revisión de alcance (Characteristics and effects of physical exercise programs for older cancer survivors: A scoping review). Retos, 44, 370–385. https://doi.org/10.47197/retos.v44i0.90843

Christensen, J. F., Sundberg, A., Osterkamp, J., Thorsen-Streit, S., Nielsen, A. B., Olsen, C. K., Djurhuus, S. S., Simon-sen, C., Schauer, T., Ellingsgaard, H., Østerlind, K., Krarup, P. M., Mosgaard, C., Vistisen, K., Tolver, A., Pedersen, B. K. & Hojman, P. (2019). Interval walking improves glycemic control and body composition after cancer treatment: a randomized controlled trial. The Journal of Clinical Endocrinololgy & Metabolism, 104(9), 3701–3712. https://doi.org/10.1210/jc.2019-00590

De Beer, J. C., & Liebenberg, L. (2014). Does cancer risk increase with HbA1c, independent of diabetes? British Journal of Cancer, 110(9), 2361-2368. https://doi.org/10.1210/jc.2019-00590

Dieli-Conwright, C. M., Courneya, K. S., Demark-Wahnefried, W., Sami, N., Lee, K., Sweeney, F. C., Stewart, C., Buchanan, T. A., Spicer, D., Tripathy, D., Bernstein, L., & Mortimer, J. E. (2018a). Aerobic and resistance exercise improves physical fitness, bone health, and quality of life in overweight and obese breast cancer survivors: a randomized controlled trial. Breast Cancer Research, 20(1), 124. https://doi.org/10.1186/s13058-018-1051-6

Dieli-Conwright, C. M., Parmentier, J. H., Sami, N., Lee, K., Spicer, D., Mack, W. J., Sattler F., & Mittelman, S. D. (2018b). Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Research Treatment, 168(1), 147-157. https://doi.org/10.1007/s10549-017-4576-y

Global Cancer Observatory (2020). Cancer Tomorrow. Lyon: International Agency for Research on Cancer. https://gco.iarc.fr/tomorrow/en/dataviz/bars?mode=population&years=2030&types=1

Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 (Physical activity and cancer: a bibliographic review 2016-2021). Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728

Guinan, E., Hussey, J., Broderick, J. M., Lithander, F. E., O'Donnell, D., Kennedy, M. J., & Connolly, E. M. (2013). The effect of aerobic exercise on metabolic and inflammatory markers in breast cancer survivors-a pilot study. Supportive Care in Cancer, 21(7), 1983–1992. https://doi.org/10.1007/s00520-013-1743-5

Hope, C., Robertshaw, A., Cheung, K. L., Idris, I., & English, E. (2016). Relationship between HbA1c and cancer in peo-ple with or without diabetes: a systematic review. Diabetic Medicine, 33(8), 1013-1025.

InBody (2014). InBody 770. https://www.composicion-corporal-inbody.com/InBody-770.html

Iyengar, N. M., & Jones, L. W. (2019). Development of exercise as interception therapy for cancer: a review. JAMA Oncolo-gy, 5(11), 1620-1627. https://doi.org/10.1001/jamaoncol.2019.2585

Kang, D. W., Lee, E. Y., An, K. Y., Min, J., Jeon, J. Y., & Courneya, K. S. (2018). Associations between physical activity and comorbidities in Korean cancer survivors. Journal of Cancer Survivorship, 12(4), 441-449. https://doi.org/10.1007/s00520-013-1743-5

Kang, X. Y., Xu, Q. Y., Yu, Z., Han, S. F., Zhu, Y. F., & Lv, X. (2020). The effects of physical activity on physiological markers in breast cancer survivors: a meta-analysis. Medicine, 99(20), e20231. https://doi.org/10.1007/s00520-013-1743-5

Ling, C. H., de Craen, A. J., Slagboom, P. E., Gunn, D. A., Stokkel, M. P., Westendorp, R. G., & Maier, A. B. (2011). Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clinical Nutrition, 30(5), 610–615. https://doi.org/10.1016/j.clnu.2011.04.001

Masuch, A., Friedrich, N., Roth, J., Nauck, M., Müller, U. A., & Petersmann, A. (2019). Preventing misdiagnosis of dia-betes in the elderly: age-dependent HbA1c reference intervals derived from two population-based study cohorts. BMC Endocrine Disorders, 19(20). https://doi.org/10.1016/j.clnu.2011.04.001

Matthews, C. E., Moore, S. C., Arem, H., Cook, M. B., Trabert, B., Håkansson, N., Larsson, S. C., Wolk, A., Gapstur, S. M., Lynch, B. M., Milne, R. L., Freedman, N. D., Huang, W., Berrington de Gonzalez, A., Kitahara, C. M., Linet, M. S., Shiroma, E. J., Sandin, S., Patel, A. V., & Lee, I. (2019). Amount and intensity of leisure-time physical activity and lower cancer risk. Journal of Clinical Oncology, 38(7), 686-697. https://doi.org/10.1200/JCO.19.02407

McArdle, W. D., Katch, F. I., & Katch, V. L. (2015). Fisiología del Ejercicio: Nutrición, Rendimiento y Salud. Spain: Wolters Kluwer Health.

Raun, S. H., Buch-Larsen, K., Schwarz, P., & Sylow, L. (2021). Exercise - A panacea of metabolic dysregulation in cancer: physiological and molecular insights. International Journal of Molecular Sciences, 22(7), 3469. https://doi.org/10.3390/ijms22073469

Río, X., González-Pérez, A., Larrinaga-Undabarrena, A., & Coca, A. (2020). Analysis of quality of life parameters in a health-promoting program for a population with cardiovascular risk factors: a preliminary study. SN Comprehensive Clini-cal Medicine, 2, 2221–2229. https://doi.org/10.1007/s42399-020-00512-9

Rodwell, V. W., Bender, D. A., Botham, K. M., Kennelly, P. J., & Weil, P. A. (2016). Harper bioquímica ilustrada. McGraw-Hill Interamericana Editores.

Sanchez, A., Grandes, G., Cortada, J. M., Pombo, H., Balague, L., & Calderon, C. (2009). Modelling innovative interven-tions for optimising healthy lifestyle promotion in primary health care: "Prescribe Vida Saludable" phase I research pro-tocol. BMC Health Services Research, 9(103). https://doi.org/10.1186/1472-6963-9-103

Schmidt, T., Schwarz, M., Van Mackelenbergh, M., Jonat, W., Weisser, B., Röcken, C., & Mundhenke, C. (2017). Feasi-bility study to evaluate compliance of physical activity over a long time period and its influence on the total activity score, glucose metabolism and physical and psychological parameters following breast cancer. Molecular and Clinical On-cology, 6(3), 397-402. https://doi.org/10.3892/mco.2017.1144

Sénéchal, M., Swift, D. L., Johannsen, N. M., Blair, S. N., Earnest, C. P., Lavie, C. J., & Church, T. S. (2013). Changes in body fat distribution and fitness are associated with changes in hemoglobin A1c after 9 months of exercise training: re-sults from the HART-D study. Diabetes Care, 36(9), 2843–2849. https://doi.org/10.2337/dc12-2428

Singh, B., Hayes, S. C., Spence, R. R., Steele, M. L., Millet, G. Y., & Gergele, L. (2020). Exercise and colorectal cancer: a systematic review and meta-analysis of exercise safety, feasibility and effectiveness. International Journal of Behavioral Nutrition and Physical Activity, 17(122). https://doi.org/10.2337/dc12-2428

Sjøberg, K. A., Frøsig, C., Kjøbsted, R., Sylow, L., Kleinert, M., Betik, A. C., Shaw, C. S., Kiens, B., Wojtaszewski, J., Rattigan, S., Richter, E. A., & McConell, G. K. (2017). Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes, 66(6), 1501–1510. https://doi.org/10.2337/db16-1327

Wang, Y., Jin, B., Paxton, R. J., Yang, W., Wang, X., Jiao, Y., Yu, C., & Chen, X. (2020).The effects of exercise on insulin, glucose, IGF-axis and CRP in cancer survivors: meta-analysis and meta-regression of randomized controlled tri-als. European Journal of Cancer Care, 29(1), e13186. https://doi.org/10.1111/ecc.13186

World Health Organization (2022). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.

World Health Organization (2021). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

Published

2023-03-31

How to Cite

Cardozo, L. A., Peña-Ibagón, J. C. ., Florez-Escobar, W. ., Castillo-Daza, C. A., Bonilla-Ocampo, D. A. ., & Reina-Monroy, J. L. . (2023). Physical self-concept in university students: Generating profiles with hierarchical classification on principal components. Retos, 48, 167–177. https://doi.org/10.47197/retos.v48.95076

Issue

Section

Original Research Article

Most read articles by the same author(s)