Asimetrías y diferencias por sexo en la cinemática del ciclo de carrera en un grupo de corredores recreativos andaluces (Bilateral asymmetries and sex differences in the kinematics of running gait cycle of a group of Andalusian recreational runners)

Autores/as

  • Daniel Rojano Ortega
  • Antonio Jesús Berral Aguilar
  • Francisco José Berral de la Rosa

DOI:

https://doi.org/10.47197/retos.v0i41.85934

Palabras clave:

ciclo de carrera, fase de apoyo, fase de vuelo, articulación subastragalina, pronación., (Running gait cycle, stance phase, swing phase, subtalar joint, eversion)

Resumen

Un ciclo de carrera comienza cuando un pie contacta con el suelo y termina cuando el mismo pie contacta de nuevo con el suelo de forma consecutiva. En un ciclo de carrera cada extremidad inferior tiene una fase de apoyo y una fase de vuelo. Durante la fase de apoyo la pronación de la articulación subastragalina es uno de los mecanismos de los que disponemos para absorber las fuerzas de impacto. Sin embargo, una excesiva pronación puede predisponer a lesiones por sobreuso de la extremidad inferior. Los propósitos del presente estudio fueron analizar 1) la duración de las fases de apoyo y vuelo de ambas piernas en un ciclo de carrera, el máximo ángulo de pronación y los momentos en los que se producen dicho ángulo y la posición neutra de la articulación subastragalina, 2) las diferencias en la pierna dominante y la no dominante en las citadas variables, 3) las diferencias de género en dichas variables. 20 corredores recreacionales de entre 20 y 28 años (10 hombres y 10 mujeres) fueron grabados corriendo en tapiz rodante entre 11 km/h y 12 km/h con una cámara de alta velocidad a 300 Hz. No existieron asimetrías en el ciclo de carrera pues no se encontraron diferencias significativas entre la pierna dominante y la no dominante en ninguna variable. El valor máximo del ángulo de pronación fue más tardío en mujeres que en hombres, lo que puede estar relacionado con la mayor prevalencia de ciertas lesiones de la extremidad inferior en mujeres.

Abstract. Running gait cycle begins when one foot comes in contact with the ground and ends when the same foot contacts the ground again. In a running gait cycle each lower limb has a stance phase and a swing phase. During the stance phase eversion of the subtalar joint is one of the mechanisms used to absorb impact forces. However, excessive rearfoot eversion may contribute to overuse running injuries of the lower limb. It is necessary to provide additional insight on sex differences or differences between dominant and non-dominant limbs in the different phases of the running gait cycle, as well as in the movements of the subtalar joint in the coronal plane. Therefore, the aim of the current study was to determine bilateral asymmetries, sex differences and peak eversion angle in the running gait cycle of recreational runners. 20 recreational runners aged 20 – 28 years (10 males and 10 females) were recorded on a treadmill at a running speed between 11 km/h and 12 km/h with high speed camera at 300 Hz. Males and females showed no significant differences between limbs in any of the variables of interest, indicating no bilateral asymmetries in running gait cycle. Female runners demonstrated a greater time to peak eversion than male runners (36.92 ± 5.79% vs 26.37 ± 5.12%, p < .01) and this may be related to some overuse running injuries that are more prevalent in females. The data obtained in this study may serve as a useful reference for future research.

Biografía del autor/a

Daniel Rojano Ortega

Profesor de Biomecánica del Departamento de Deporte e Informática de la Universidad Pablo de Olavide de Sevilla.

Citas

Aguado, X. (1997). Biomecánica fuera y dentro del laboratorio. León: Universidad de León. Secretariado de Publicaciones, D.L.

Aminaka, N., Arthur, H., Porcari, J.P., Foster, C., Cress, M., & Hahn, C. (2018). No immediate effects of highly cushioned shoes on basic running biomechanics. Kinesiology, 50(1), 124–130. https://doi.org/10.26582/k.50.1.10

Ariza-Viviescas, A., Niño-Pinzón, D,M., Dutra-de-Souza, H.G., Esteban-Moreno, J.D., Benítez-Medina, D., Sánchez-Delgado, J.C. (2021). Sprint pattern analysis of professional female soccer players on artificial and natural turf. Retos, 39, 483-487. https://doi.org/10.47197/retos.v0i39.77752

Becker, J., James, S., Wayner, R., Osternig, L., & Chou, L. (2017). Biomechanical factors associated with Achilles tendinopathy and medial tibial stress syndrome in runners. American Journal of Sports Medicine, 45, 2614–2621. https://doi.org/10.1177/0363546517708193

Cámara, J. (2011). Análisis de la marcha : sus fases y variables espacio-temporales. Entramado, 13, 160-173.

Carpes, F.P., Mota, C.B., & Faria, I.E. (2010). On the bilateral asymmetry during running and cycling e A review considering leg preference. Physical Therapy in Sport, 11, 136–142. https://doi.org/10.1016/j.ptsp.2010.06.005

Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Second Edition. Hillsdate, NJ: LEA.

Chumanov, E.S., Wall-Scheffler, C., & Heiderscheit, B.C. (2008). Gender differences in walking and running on level and inclined surfaces. Clinical Biomechanics, 23, 1260–1268. https://doi.org/10.1016/j.clinbiomech.2008.07.011

Deflandre, D., Schwartz, C., Weerts, J.P., Croisier, J.L., & Bury, T. (2016). A Comparison of 3D Methods for Identifying the Stance Phase in Treadmill Running for Both Rearfoot and Forefoot Runners. Journal of Sports Science, 4, 124–131.

https://doi.org/10.17265/2332-7839/2016.03.002

De Wit, B., De Clercq, D., & Aerts, P. (2000). Biomechanical analysis of the stance phase during barefoot and shod running. Journal of Biomechanics, 33, 269–278.

https://doi.org/10.1016/s0021-9290(99)00192-x

Donoghue, O.A., Harrison, A.J., Laxton, P., & Jones, R.K. (2008). Lower limb kinematics of subjects with chronic Achilles tendon injury during running. Research in Sports Medicine, 16, 23–38. https://doi.org/10.1080/15438620701693231

Fernández-López, I., Rojano-Ortega, D. (2020). Biomechanical Factors Related to Running Injuries: A Review and Practical Recommendations. Strength and Conditioning Journal, 42 (1), 24–38.

https://doi.org/10.1519/SSC.0000000000000497

Fellin, R.E., Manal, K., & Davis, I.S. (2010). Comparison of lower extremity kinematic curves during overground and treadmill running. Journal of Applied Biomechanics, 26, 407–414. https://doi.org/10.1123/jab.26.4.407

Ferber, R., McKlay-Davis, I., Williams III, D.S. (2003).Gender differences in lower extremity mechanics during running. Clinical Biomechanics 18 (2003) 350–357. https://doi.org/10.1016/S0268-0033(03)00025-1

Ferber, R., Sheerin, K., & Kendall, K.D. (2009). Measurement error of rearfoot kinematics during running between a 100Hz and 30Hz camera. International SportMed Journal, 10 (3), 152–162.

Francis, P., Whatman, C., Sheerin, K., Hume, P., & Johnson, M. (2018). The Proportion of Lower Limb Running Injuries by Gender, Anatomical Location and Specific Pathology: A Systematic Review. Journal of Sports Science and Medicine, 18, 21–31.

Fucci, S., Benigni, M., & Formasari, V. Biomecánica del Aparato Locomotor Aplicada al Acondicionamiento Muscular. Madrid: Elsevier España, S.A.; 2003.

Fukano, M., Fukubayashi, T. & Banks, S.A. (2018). Sex differences in three-dimensional talocrural and subtalar joint kinematics during stance phase in healthy young adults. Human Movement Science, 61, 117–125. https://doi.org/-10.1016/j.humov.2018.06.003

Gilgen-Ammann, R., Taube, W., & Wyss, T. (2017). Gait Asymmetry During 400- to 1000-m High-Intensity Track Running in Relation to Injury History. International Journal of Sports Physiology and Performance, 12, S2157–160. https://dx.doi.org/10.1123/ijspp.2016-0379

Haugen, T., Danielsen, J., McGhie, D., Sandbakk, Ø, & Ettema, G. (2018). Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters. Scandinavian Journal of Medicine & Science in Sports, 28, 1001–1008. https://dx.doi.org/10.1111/sms.12953

Hreljac A. Impact and overuse injuries in runners. (2004). Medicine & Science in Sports & Exercise, 36, 845–849. https://doi.org/10.1249/01.mss.0000126803.66636.dd

Jiménez, R. (2004). Estudio articular del miembro inferior durante el ciclo de la marcha. El Peu, 24, 211–216.

Kapandji, A.I. (2004). Fisiología Articular, Miembro Inferior. Madrid: Editorial Médica Panamericana, S.A..

Kharb, A., Saini, V., Jain, Y.K., & Dhiman, S. (2011). A review of gait cycle and its parameters. International Journal of Computational Engineering & Management, 13, 78–83.

Kozinc, Z., & Šarabon, N. (2017). Common Running Overuse Injuries and Prevention. Montenegrin Journal of Sports Science and Medicine, 6 (2): 67–74.

https://doi.org/10.26773/mjssm.2017.09.009

Lohman, E.B. 3rd, Balan Sackiriyas, K.S., & Swen, R.W. (2011). A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking. Physical Therapy in Sport, 12, 151–163. https://doi.org/10.1016/j.ptsp.2011.09.004

López-Gómez, B., Pérez-Mendoza, D.A., Guzmán-Revelo, J.S., Rangel-Caballero, L.G., Corzo-Vargas, Y., Facioli, T., Angarita-Fonseca, T., Sánchez- Delgado, J.C. (2020). Análisis del patrón de carrera sobre superficie artificial y natural en futbolistas adolescentes. Retos, 38, 109-113. https://doi.org/10.47197/retos.v38i38.72337

Milner, C.E., Hamill, J., & Davis, I.S. (2010). Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture. Journal of Orthopaedic and Sports Physical Therapy, 40(2), 59–66. https://doi.org/10.2519/jospt.2010.3024

Munteanu, S.E., & Barton, C.J. (2011). Lower limb biomechanics during running in individuals with achilles tendinopathy: a systematic review. Journal of Foot and Ankle Research, 4, 15. https://doi.org/10.1186/1757-1146-4-15

Muñoz, M., García, F., Soto, V.M., & Latorre, P.A. (2018). Can running kinetics be modified using a barefoot training program? Apunts, Medicina de L’Esport, 53(199), 98–104. https://doi.org/10.1016/j.apunts.2017.11.004

Nakayama, Y., Kudo, K, & Ohtsuki, T. (2010). Variability and fluctuation in running gait cycle of trained runners and non-runners. Gait & Posture, 31, 331–335. https://doi.org/10.1016/j.gaitpost.2009.12.003

Nicola, T.L., & Jewison, D.J. (2012). The Anatomy and Biomechanics of Running. Clinics in Sports Medicine, 31, 187–201. https://doi.org/10.1111/10.1016/-j.csm.2011.10.001

Nilsson, J., & Thorstensson, A. (1989). Ground reaction forces at different speeds of human walking and running. Acta Physiologica Scandinavica, 136, 217–227. https://doi.org/10.1111/j.1748-1716.1989.tb08655.x

Novacheck, T.F. (1998). The Biomechanics of Running. Gait & Posture, 7, 77–95. https://doi.org/10.1016/s0966-6362(97)00038-6

Perry, S.D., & Lafortune, M.A. (1995). Influences of inversion/eversion of the foot upon impact loading during locomotion. Clinical Biomechanics, 10, 253–257. https://doi.org/10.1016/0268-0033(95)00006-7

Riley, P.O., Dicharry, J., Franz, J., Della Croce, U., Wilder, R.P., & Kerrigan, D.C. (2008). A kinematics and kinetic comparison of overground and treadmill running. Medicine and Science in Sports and Exercise, 40, 1093–1100. https://doi.org/10.1249/MSS.0b013e3181677530.

Rodal, F., García, J.L., Arufe, V. (2013). Factores de riesgo de lesion en atletas. Retos. Nuevas tendencias en Educación Física, Deporte y Recreación, 23, 70-74. https://doi.org/10.47197/retos.v0i23.34571

Rubinstein, M., Eliakim, A., Steinberg, N., Nemet, D., Ayalon, M., Zeev, A., …, & Brosh, T. (2017). Biomechanical characteristics of overweight and obese children during five different walking and running velocities. Footwear Science, 9(3), 149–159. https://doi.org/10.1080/19424280.2017.1363821

Sakaguchi, M., Ogawa, H., Shimizu, N., Kanehisa, H., Yanai, T., & Kawakami, Y. (2014). Gender differences in hip and ankle joint kinematics on knee abduction during running. European Journal of Sport Science, 14(S1), S302–309. http://dx.doi.org/10.1080/17461391.2012.693953

Sinclair, J., & Taylor, P. (2014). Sex differences in tibiocalcaneal kinematics. Human Movement, 15 (2), 105–109. http://dx.doi.org/10.2478/humo-2014-0010

Sinclair, J., Richards, J., Taylor, P.J., Edmunson, C.J., Brooks, D., & Hobbs, S.J. (2013). Three-dimensional kinematic comparison of treadmill and overground running. Sports Biomechanics, 12(3), 272–282. http://dx.doi.org/10.1080/-14763141.2012.759614

Smith, L., & Hanley, B. (2013) Comparisons between Swing Phase Characteristics of Race Walkers and Distance Runners. International Journal of Exercise Science, 6(4), 269–277.

Takabayashi, T., Edama, M., Nakamura, M., Nakamura, E., Inai, T., & Kubo, M. (2017). Gender differences associated with rearfoot, midfoot, and forefoot kinematics during running. European Journal of Sport Science, 17 (10), 1289–1296. https://doi.org/10.1080/17461391.2017.1382578

Taunton, J.E., Ryan, M.B., Clement, D.B., McKenzie, D.C., Lloyd-Smith, D.R., & Zumbo, B.D. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36, 95–101. https://doi.org/10.1136/bjsm.36.2.95

Descargas

Publicado

2021-07-01

Cómo citar

Rojano Ortega, D., Berral Aguilar, A. J., & Berral de la Rosa, F. J. (2021). Asimetrías y diferencias por sexo en la cinemática del ciclo de carrera en un grupo de corredores recreativos andaluces (Bilateral asymmetries and sex differences in the kinematics of running gait cycle of a group of Andalusian recreational runners). Retos, 41, 512–518. https://doi.org/10.47197/retos.v0i41.85934

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a