Short-term effect of the neurodynamic sliding technique on the flexibility of the hamstring muscles in col-lege soccer player: A pilot randomized clinical trial

Authors

  • Fabio Ciurlizza Escobar Universidad Peruana de Ciencias Aplicadas
  • Giancarlo Becerra-Bravo Universidad Peruana de Ciencias Aplicadas
  • Sergio Bravo-Cucci Universidad Peruana de Ciencias Aplicadas https://orcid.org/0000-0001-6357-0308

DOI:

https://doi.org/10.47197/retos.v50.96368

Keywords:

Hamstring flexibility, neural sliding technique, sport

Abstract

The objective of the study was to determine the short-term effect of neurodynamic sliding techniques (NDT) on the flexibility of the hamstring muscles of university soccer players. The study corresponds to a double-blind randomized clinical trial pilot study. 16 university soccer players participated. The intervention was TDN for lower limbs and the controls received placebo therapy. The outcome variable was Maximum Hamstring Flexibility (MIF) using the leg raise test with the knee extended; before, at the end of the intervention and after 15 minutes. The effect size was considered using Cohen's d. For the results, we included 16 subjects and 32 lower limbs: no significant differences were found in the baseline between the CG and EG according to age, career group, semester completed, time spent practicing the sport, hours of practice per week. , playing position, dominance or IMF. In the statistical analysis of Maximum Hamstring Flexibility (FIM), the Student t test for independent samples was used, showing that the Experimental Group (EG) increased flexibility with an average of 18.2 ± 10.2º in comparison to the Control Group (CG) with an average of 1.8 ± 8º. The significant difference was 16.4º (95% CI: 9.8 – 20.1º, p < 0.001). Cohen's d was used for the effect size, obtaining a value of 1.8 (95% CI: 1 – 2.6), indicating a large effect. The Number Needed to Treat (NNT) was 1.6 for a ≥10° improvement in flexibility. It is concluded that TDN is effective in short-term flexibility of the hamstring muscles.

Keywords: Neurodynamic Glide, University Soccer Players, Muscular Flexibility, Hamstring Muscles, Neural Mobilization Technique, Sport.

Author Biographies

Fabio Ciurlizza Escobar , Universidad Peruana de Ciencias Aplicadas

Docente Universidad Peruana de Ciencias Aplicadas

Giancarlo Becerra-Bravo , Universidad Peruana de Ciencias Aplicadas

Docente Universidad Peruana de Ciencias Aplicadas

Sergio Bravo-Cucci , Universidad Peruana de Ciencias Aplicadas

Docente de la Universidad Peruana de Ciencias Aplicadas

Investigador RENACYT

References

Areeudomwong, P., Oatyimprai, K., & Pathumb, S. (2016). A randomised, placebo-controlled trial of neurodynamic slid-ers on hamstring responses in footballers with hamstring tightness. Malaysian Journal of Medical Sciences, 23(6), 60–69. https://doi.org/10.21315/mjms2016.23.6.7

Avrillon, S., Lacourpaille, L., Hug, F., Le Sant, G., Frey, A., Nordez, A., & Guilhem, G. (2020). Hamstring muscle elas-ticity differs in specialized high-performance athletes. Scandinavian journal of medicine & science in sports, 30(1), 83–91. https://doi.org/10.1111/sms.13564

Ayala, F., López-Valenciano, A., Gámez Martín, J. A., De Ste Croix, M., Vera-Garcia, F. J., García-Vaquero, M. D. P., Ruiz-Pérez, I., & Myer, G. D. (2019). A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Al-gorithms. International Journal of Sports Medicine, 40(5), 344–353. https://doi.org/10.1055/a-0826-1955

Bartlett, R. D., Choi, D., & Phillips, J. B. (2016). Biomechanical properties of the spinal cord: Implications for tissue engi-neering and clinical translation. Regenerative Medicine, 11(7), 659–673. https://doi.org/10.2217/rme-2016-0065

Bonser, R. J., Hancock, C. L., Hansberger, B. L., Loutsch, R. A., Stanford, E. K., Zeigel, A. K., Baker, R. T., May, J., Nasypany, A., & Cheatham, S. (2017). Changes in Hamstring Range of Motion After Neurodynamic Sciatic Sliders: A Critically Appraised Topic. Journal of Sport Rehabilitation, 26(4), 311–315. https://doi.org/10.1123/jsr.2015-0166

Cayco, C. S., Labro, A. V., & Gorgon, E. J. R. (2019). Hold-relax and contract-relax stretching for hamstrings flexibility: A systematic review with meta-analysis. Physical therapy in sport : official journal of the Association of Chartered Phys-iotherapists in Sports Medicine, 35, 42–55. https://doi.org/10.1016/j.ptsp.2018.11.001

Castellote-Caballero, Y., Valenza, M. C., Martín-Martín, L., Cabrera-Martos, I., Puentedura, E. J., & Fernández-de-las-Peñas, C. (2013). Effects of a neurodynamic sliding technique on hamstring flexibility in healthy male soccer players. A pilot study. Physical Therapy in Sport, 14(3), 156–162. https://doi.org/10.1016/j.ptsp.2012.07.004

Castellote-Caballero, Y., Valenza, M. C., Puentedura, E. J., Fernández-de-las-Peñas, C., & Alburquerque-Sendín, F. (2014). Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome. Journal of Sports Medicine, 2014, 1–8. https://doi.org/10.1155/2014/127471

Dilley, A., Odeyinde, S., Greening, J., & Lynn, B. (2008). Longitudinal sliding of the median nerve in patients with non-specific arm pain. Manual Therapy, 13(6), 536–543. https://doi.org/10.1016/j.math.2007.07.004

Erickson, L. N., & Sherry, M. A. (2017). Rehabilitation and return to sport after hamstring strain injury. Journal of Sport and Health Science, 6(3), 262–270. https://doi.org/10.1016/j.jshs.2017.04.001

Espejo-Antúnez, L., Carracedo-Rodríguez, M., Ribeiro, F., Venâncio, J., De la Cruz-Torres, B., & Albornoz-Cabello, M. (2019). Immediate effects and one-week follow-up after neuromuscular electric stimulation alone or combined with stretching on hamstrings extensibility in healthy football players with hamstring shortening. Journal of Bodywork and Movement Therapies, 23(1), 16–22. https://doi.org/10.1016/j.jbmt.2018.01.017

Figueiredo, D. H., Dourado, A. C., Stanganelli, L. C. R., & Gonçalves, H. R. (2021). Evaluación de la composición cor-poral y su relación com la aptitud física em futebolistas professionales al inicio de la pré-temporada (Evaluation of body composition and its relationship with physical fitness in professional soccer players at the beginni. Retos, 40, 117–125. https://doi.org/10.47197/retos.v1i40.82863

Gonzalez Vargas, J. M., & Gallardo Pérez, J. M. (2023). Análisis descriptivo de variables de rendimiento físico en un equipo de fútbol de primera división chilena femenina (Descriptive analysis of physical performance variables in a Chilean wo-men’s first division football team). Retos, 48, 657–666. https://doi.org/10.47197/retos.v48.95406

Hägglund, M., Waldén, M., & Ekstrand, J. (2013). Risk Factors for Lower Extremity Muscle Injury in Professional Soccer. The American Journal of Sports Medicine, 41(2), 327–335. https://doi.org/10.1177/0363546512470634

Hallaceli, H., Uruç, V., Uysal, H. H., Ozden, R., Hallaçeli, C., Soyuer, F., Ince Parpucu, T., Yengil, E., & Cavlak, U. (2014). Normal hip, knee and ankle range of motion in the Turkish population. Acta Orthopaedica Et Traumatologica Turci-ca, 48(1), 37–42. https://doi.org/10.3944/AOTT.2014.3113

Hickey, J., Shield, A. J., Williams, M. D., & Opar, D. A. (2014). The financial cost of hamstring strain injuries in the Aus-tralian Football League. British Journal of Sports Medicine, 48(8), 729–730. https://doi.org/10.1136/bjsports-2013-092884

Horment-Lara, G., Cruz-Montecinos, C., Núñez-Cortés, R., Letelier-Horta, P., & Henriquez-Fuentes, L. (2016). Onset and maximum values of electromyographic amplitude during prone hip extension after neurodynamic technique in pa-tients with lumbosciatic pain: A pilot study. Journal of Bodywork and Movement Therapies, 20(2), 316–323. https://doi.org/10.1016/j.jbmt.2015.08.006

Jones, A., Jones, G., Greig, N., Bower, P., Brown, J., Hind, K., & Francis, P. (2019). Epidemiology of injury in English Professional Football players: A cohort study. Physical Therapy in Sport, 35, 18–22. https://doi.org/10.1016/j.ptsp.2018.10.011

Kang, Y. H., Ha, W. B., Geum, J. H., Woo, H., Han, Y. H., Park, S. H., & Lee, J. H. (2023). Effect of Muscle Energy Technique on Hamstring Flexibility: Systematic Review and Meta-Analysis. Healthcare (Basel, Switzerland), 11(8), 1089. https://doi.org/10.3390/healthcare11081089

Kornberg, C., & McCarthy, T. (1992). The Effect of Neural Stretching Technique on Sympathetic Outflow to the Lower Limbs. Journal of Orthopaedic & Sports Physical Therapy, 16(6), 269–274. https://doi.org/10.2519/jospt.1992.16.6.269

López López, L., Torres, J. R., Rubio, A. O., Torres Sánchez, I., Cabrera Martos, I., & Valenza, M. C. (2019). Effects of neurodynamic treatment on hamstrings flexibility: A systematic review and meta-analysis. Physical therapy in sport : of-ficial journal of the Association of Chartered Physiotherapists in Sports Medicine, 40, 244–250. https://doi.org/10.1016/j.ptsp.2019.10.005

McHugh, M. P., Johnson, C. D., & Morrison, R. H. (2012). The role of neural tension in hamstring flexibility. Scandinavian Journal of Medicine & Science in Sports, 22(2), 164–169. https://doi.org/10.1111/j.1600-0838.2010.01180.x

McHugh, M. P., Tallent, J., & Johnson, C. D. (2013). The Role of Neural Tension in Stretch-Induced Strength Loss. Journal of Strength and Conditioning Research, 27(5), 1327–1332. https://doi.org/10.1519/JSC.0b013e31828a1e73

McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Vanicek, N., Burns, J., & 1000 Norms Project Consortium, F. the 1000 N. P. (2017). Normative reference values for strength and flexibility of 1,000 children and adults. Neurology, 88(1), 36–43. https://doi.org/10.1212/WNL.0000000000003466

Medeiros, D. M., Cini, A., Sbruzzi, G., & Lima, C. S. (2016). Influence of static stretching on hamstring flexibility in healthy young adults: Systematic review and meta-analysis. Physiotherapy Theory and Practice, 32(6), 438–445. https://doi.org/10.1080/09593985.2016.1204401

Moreno-Pérez, V., Rodas, G., Peñaranda-Moraga, M., López-Samanes, Á., Romero-Rodríguez, D., Aagaard, P., & Del Coso, J. (2022). Effects of Football Training and Match-Play on Hamstring Muscle Strength and Passive Hip and Ankle Range of Motion during the Competitive Season. International journal of environmental research and public health, 19(5), 2897. https://doi.org/10.3390/ijerph19052897

Neto, T., Freitas, S. R., Marques, M., Gomes, L., Andrade, R., & Oliveira, R. (2017). Effects of lower body quadrant neural mobilization in healthy and low back pain populations: A systematic review and meta-analysis. Musculoskeletal Sci-ence and Practice, 27, 14–22. https://doi.org/10.1016/j.msksp.2016.11.014

Opar, D. A., Williams, M. D., & Shield, A. J. (2012). Hamstring Strain Injuries. Sports Medicine, 42(3), 209–226. https://doi.org/10.2165/11594800-000000000-00000

Paredes-Gómez, R. ., & Potosí-Moya, V. . (2023). Análisis del protocolo de curl nórdico de isquiotibiales en la flexibilidad de los deportistas (Analysis of the Nordic curl protocol in the flexibility of athletes). Retos, 48, 720–726. https://doi.org/10.47197/retos.v48.96671

Ponce-González, J. G., Gutiérrez-Manzanedo, J. V., De Castro-Maqueda, G., Fernández-Torres, V. J., & Fernández-Santos, J. R. (2020). The Federated Practice of Soccer Influences Hamstring Flexibility in Healthy Adolescents: Role of Age and Weight Status. Sports (Basel, Switzerland), 8(4), 49. https://doi.org/10.3390/sports8040049

Ribeiro-Alvares, J. B., Dornelles, M. P., Fritsch, C. G., de Lima-E-Silva, F. X., Medeiros, T. M., Severo-Silveira, L., Marques, V. B., & Baroni, B. M. (2020). Prevalence of Hamstring Strain Injury Risk Factors in Professional and Under-20 Male Football (Soccer) Players. Journal of sport rehabilitation, 29(3), 339–345. https://doi.org/10.1123/jsr.2018-0084

Roach, K. E., & Miles, T. P. (1991). Normal hip and knee active range of motion: the relationship to age. Physical Therapy, 71(9), 656–665. https://doi.org/10.1093/ptj/71.9.656

Rudisill, S. S., Varady, N. H., Kucharik, M. P., Eberlin, C. T., & Martin, S. D. (2023). Evidence-Based Hamstring Injury Prevention and Risk Factor Management: A Systematic Review and Meta-analysis of Randomized Controlled Trials. The American journal of sports medicine, 51(7), 1927–1942. https://doi.org/10.1177/03635465221083998

Sengupta, P., De, S., Pal, A., Maity, P., Banerjee, M., & Dhara, P. C. (2012). Variation of Range of Joint Motion in Ben-galee (Indian) Healthy Adult Subjects. Journal of Life Sciences, 4(2), 123–133. https://doi.org/10.1080/09751270.2012.11885204

Shacklock, M. (2005). Clinical Neurodynamics. In Clinical Neurodynamics. https://doi.org/10.1016/B978-0-7506-5456-2.X5001-X

Sharma, S., Balthillaya, G., Rao, R., & Mani, R. (2016). Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: A randomized controlled tri-al. Physical Therapy in Sport, 17(2016), 30–37. https://doi.org/10.1016/j.ptsp.2015.03.003

Wan, X., Qu, F., Garrett, W. E., Liu, H., & Yu, B. (2017a). Relationships among hamstring muscle optimal length and hamstring flexibility and strength. Journal of Sport and Health Science, 6(3), 275–282. https://doi.org/10.1016/j.jshs.2016.04.009

Published

2023-09-15

How to Cite

Ciurlizza Escobar, F., Becerra-Bravo, G., & Bravo-Cucci, S. (2023). Short-term effect of the neurodynamic sliding technique on the flexibility of the hamstring muscles in col-lege soccer player: A pilot randomized clinical trial. Retos, 50, 1010–1018. https://doi.org/10.47197/retos.v50.96368

Issue

Section

Original Research Article

Most read articles by the same author(s)