Assessment of Tug of War pullers competition intensity and physiological response at the 2019 European Championship

Authors

  • Arkaitz Castañeda-Babarro
  • Borja Gutiérrez Santamaría Health, Physical Activity and Sports Science Laboratory, Department of Physical Activity and Sports, Faculty of Psychology and Education, University of Deusto, 48007 Bizkaia, Spain
  • Aitor Coca Health, Physical Activity and Sports Science Laboratory, Department of Physical Activity and Sports, Faculty of Psychology and Education, University of Deusto, 48007 Bizkaia, Spain
  • Julio Calleja-González Physical Education and Sport Department, University of the Basque Country (UPV/EHU), Vitoria- Gasteiz 01007 Spain
  • Ruth Cayero Physical Education and Sport Department, University of the Basque Country (UPV/EHU), Vitoria- Gasteiz 01007 Spain

DOI:

https://doi.org/10.47197/retos.v44i0.90398

Keywords:

Tow, blood lactate, RPE, physiological, intensity., (ow, lactato, RPE, fisiología, intensidad)

Abstract

Tug of war (TOW) involves 2 teams of eight people, pulling against each other on a rope. The main goal of TOW is to pull the opposing team towards a centre line over a distance of 4 m. The measurement of physiological parameters is key to understanding the demands of an activity and to identifying its limiting performance factors. The main aim of this study was to evaluate the intensity and effort demands of TOW pullers during competition, as follows: Data were collected from 7 male pullers (Height: 175.14±4.85; Body Mass: 77.39±3.92; Age: 39.86±11.68; %Fat: 17.56±5.21; VO2max: 44.24±8.38) in the 560 kg category. The blood lactate concentrations (LAC) were assessed before and at the end of each pull, and the global rating of perceived exertion (RPE) at the end of the pulls. The following week, pullers performed a graded exercise test (GXT). Heart rate, LAC and RPE were assessed before, during and at the end of the GXT to calculate the individual anaerobic threshold. The mean blood lactate concentrations recorded at the end of the pulls (6±1.9 mmol/l) were 32% higher than the mean values recorded for the individual anaerobic threshold intensity (4.1±0.5 mmol/l). For their part, the mean RPE values of athletes after the pulls (6±1.5 mmol/l) were 21% lower than those obtained for intensity of the individual anaerobic threshold (7.6±0.8 mmol/l). The intensity and effort response are greater and kept above the anaerobic threshold during the competition in TOW pullers.

Resumen. Tug of war (TOW) involucra a 2 equipos de ocho personas, tirando una contra la otra con una cuerda. El objetivo principal es llevar al equipo contrario hacia una línea central a una distancia de 4 m. La medición de parámetros fisiológicos es clave para comprender las demandas de una actividad y para identificar sus factores limitantes de rendimiento. El objetivo principal de este estudio fue evaluar la intensidad y las demandas de esfuerzo de los tiradores de TOW durante la competición. 7 tiradores masculinos (altura: 175,14 ± 4,85; masa corporal: 77,39 ± 3,92; edad: 39,86 ± 11,68; % de grasa: 17,56 ± 5,21; VO2max: 44,24 ± 8,38) en la categoría de 560 kg. Se evaluaron concentraciones de lactato (LAC) antes y después de cada tirada, y el esfuerzo percibido (RPE) al final. La siguiente semana, los tiradores realizaron una prueba de esfuerzo (GXT). La FC, LAC y RPE se evaluaron antes, durante y después del GXT para calcular el umbral anaeróbico individual. Las concentraciones de LAC registradas medios registrados para la intensidad del umbral anaeróbico individual (VT2) (4,1 ± 0,5 mmol/l). Los valores medios de RPE de los deportistas en competición (6 ± 1,5 mmol/l) fueron un 21% inferiores a los obtenidos para la intensidad del VT2 (7,6 ± 0,8 mmol/l). La intensidad y la respuesta al esfuerzo son mayores y se mantienen por encima del VT2 durante la competición en tiradores TOW al final de los tirones (6 ± 1,9 mmol/l) fueron un 32% más altas que los valores.

References

Achten, J. & Jeukendrup, A. E. (2003). Heart rate monitoring. Applications and limitations. Sports Med., 33, 517–538.

Astrand, P. (1979). Fisiología del trabajo (Ed. Paname).

Benito-Peinado, P. J., Calderón-Montero, F. J., García-Zapico, A.& Peinado-Lozano, A. B. (2005). Validity and reliability of an incremental ramp test for active persons. International Journal of Sport Science, 1(1), 46–63. https://doi.org/10.5232/ricyde2005.00104

Berti Zanella, P., Donner Alves, F. & Guerini de Souza, C. (2017). Effects of beta-alanine supplementation on performance and muscle fatigue in athletes and non-athletes of different sports: a systematic review. J Sports Med Phys Fitness, 57(9), 1132–1141.

Bishop, P.A., Smith, J.F., Kime, J.C., Mayo, J.M. & Tin, .Y.H. (1992). Comparasion of a manual and a automated enzymatic technique for determining blood lactate concentrations. Int J Sports Med, 13(1), 36–39.

Bogdanis, G.C., Nevill, M.E., Lakomy, H.K., Graham, C.M. & Louis, G. (1996). Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol, 74(5), 461–469.

Bonaventura, J,M., Sharpe, K., Knight. E., Fuller, K.L., Tanner, R.K. & Gore, C.J. (2015). Reliability and accuracy of six hand-held blood lactate analysers. J Sports Sci Med, 14(1), 203–214.

Borg, G. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports. Exerc., 14(5), 377–381.

Boudreaux, B.D., Hebert, E.P., Hollander, D.B., Williams, B.M., Cormier, C.L., Naquin, M.R., Gillan, W.W., Gusew, E.E. & Kraemer, R.R. (2018). Validity of Wearable Activity Monitors during Cycling and Resistance Exercise. Med Sci Sports Exerc, 50(3), 624–633.

Buchheit, M. (2014). Monitoring training status with HR measures: do all roads lead to Rome? Front. Physiol., 5, 73.

Carr, A.J., Hopkins, W.G. & Gore, C.J. (2011). Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med., 41(10), 801–814.

Carter, J.E.L.,Lindsay Capter, J.E. & Honeyman, B. (1990). Somatotyping: development and applications. Cambridge: Cambridge University Press.

Dalmonte. A., Gallozi, C., Lupo, S., Marcos, E. & Menchinelli, C. (1987). Evaluación funcional del jugador de baloncesto y balonmano. Apunts., 24, 243–251.

Faude, O., Kindermann, W. & Meyer, T. (2009). Lactate threshold concepts: how valid are they? Sports Med, 39(6), 469–490.

Galaz-Campos, D., Olivares-Arancibia, J., Solis-Urra, P., Suarez-Cadenas, E., Santos-Lozano, A., Rodríguez-Rodríguez, F., & Cristi-Montero, C. (2020). Efecto de las vibraciones de alta intensidad de cuerpo completo sobre la remoción del lactato sanguíneo y la frecuencia cardiaca luego de una prueba máxima en hombres activos jóvenes (Effect of High-Intensity whole body vibration on blood lactate removal. Retos, 39, 471-476. https://doi.org/10.47197/retos.v0i39.78441

Gollnick, P.D., Bayly, W.M. & Hodgson, D. (1986). Exercise intensity, training, diet, and lactate concentration in muscle and blood. Med Sci Sports Exerc., 18(3), 334–340.

Hagberg, J.M., Moore, G.E., FerrellHagberg, J.M., Moore, G.E. & Ferrell, R. E. (2001). Specific genetic markers of endurance performance and VO2max. Exerc. Sport Sci. Rev., 29, 15–19.

Hilton, N.P., Leach, N.K., Hilton, M.M., Sparks, S.A. & McNaughton L.R. (2020). Enteric-coated sodium bicarbonate supplementation improves high-intensity cycling performance in trained cyclists. Eur J Appl Physiol, 120(7), 1563–1573.

Goodie, J.L., Kevin T. L. &Scott, S. (2000). Validation of the Polar Heart Rate Monitor for Assessing Heart Rate During Physical and Mental Stress. Journal of Psychophysiology, 14(3), 159–164.

Winkert, K., Kirsten, J., Kamnig, R., Steinacker, J.M. & Treff, G. (2021). Differences in VO2max Measurements Between Breath-by-Breath and Mixing-Chamber Mode in the COSMED K5. Int J Sports Physiol Perform, 1–6.

Lee, R.C., Wang, Z., Heo, M., Ross. R., Janssen, I. & Heymsfield, S.B. (2000). Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr, 72(3), 796–803.

Lucia, A., Hoyos, J., Pérez, M., Santalla, A. & Chicharro, J. L. (2002). Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med. Sci. Sports Exerc., 34, 2079–2084.

Rocha, M. (1975). Peso osseo do brasilerio de ambos os sexos de 17 a 25 anos. Arq Anat Antrop, 1, 445.

Margaria, R., Aghemo, P. & Sassi, G. (1971). Lactate acid production in supramaximal exercise. Pflügers Arch, 326, 152–161.

Mazuera-Quiceno, C., Dávila-Grisalez, A., Calderón-González, J., Palacios-Ruales, Y., & Tobar-Gutiérrez, A. (2021). Medio más eficaz en el aclaramiento de lactato en luchadores olímpicos (Most effective mean for lactate clearance in Olympic wrestling). Retos, 43, 1073-1078. https://doi.org/10.47197/retos.v43i0.88756

Mielgo-Ayuso. J., Urdampilleta, A., Martinez-Sanz, J. & Seco, J. (2012). Ingesta dietética de hierro y su deficiencia en las jugadoras de voleibol femenino de élite. Nutr Hosp, 27(5), 1592–1597.

Morrow, J. A., Fell, R. D., & Gladden, L. B. (1988). Respiratory alkalosis: no effect on blood lactate decline or exercise performance. European Journal of Applied Physiology and Occupational Physiology, 58(1–2), 175–181.

Pandolf, K. (1982). Differentiated ratings of perceived exertion during physical exercise. Med Sci Sports Exerc, 14, 397–405.

Spierer, D.K., Goldsmith, R., Baran, D.A., Hryniewicz, K. & Katz, S. (2004). Effects of active vs. passive recovery on work performed during serial supramaximal exercise tests. Int J Sports Med, 25(2), 109–114.

Tanaka, K., Ushizu, A., Minamitani, N. Fukushima, M., & Yamamoto, H. (2005). Biomechanical analysis on dynamic pulling skill for elite indoor tug of war athletes. Paper Presented at the 23 International Symposium on Biomechanics in Sports. Beijing, China, 330–333.

Tanner, R.K., Fuller, K.L. & Ross, M. (2010). Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur J Appl Physiol., 109(3), 551–559.

TOW. (2021). TOW International Federation. https://tugofwar-twif.org/

Warrington, G., Ryan, C., Murray, F., P Duffy, P. & Kirwan. J. (2001). Physiological and metabolic characteristics of elite tug of war athletes. Br J Sports Med, 31, 396–401.

Hopkins, W.G., Marshall, S.W., Batterham, A.M. & Hanin, Y. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine and Science in Sports and Exercise, 41(1), 3–13.

WMAD. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194.

Wu, C.L., Shih, M.C., Yang, C..C, Huang, M.H. & Chang, C.K. (2010). Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. J Int Soc Sports Nutr, 26(7), 33.

Downloads

Published

2022-04-01

How to Cite

Castañeda-Babarro, A., Gutiérrez Santamaría, B., Coca, A., Calleja-González, J., & Cayero, R. (2022). Assessment of Tug of War pullers competition intensity and physiological response at the 2019 European Championship. Retos, 44, 357–363. https://doi.org/10.47197/retos.v44i0.90398

Issue

Section

Original Research Article

Most read articles by the same author(s)