Prediction of vo2 max in healthy non-athlete men based on ventilatory threshold (Predicción de vo2 max en hombres sanos no atletas basado en umbral de ventilatorio)

Rodolfo Nunes, Jurandir Silva, Alexandre Machado, Luciana Menezes, Danilo Bocalini, Ignácio Seixas, Vicente Lima, Rodrigo Vale


Abstract. The VO2max measures provide efficiency in exercise prescription, due to a precise evaluation of one’s physical conditioning level. The aim of the present study was to develop and validate a VO2max prediction model based on ventilatory threshold indicators on maximal effort test in healthy non-athlete male. Accordingly, 3.147 healthy non-athlete male aged 20 and older volunteered to be tested on a cycle ergometer using a maximum incremental protocol. The subjects were randomly assigned into 2 groups: group A (estimation) and group B (validation). The independent variables were: weight in kilograms (weight), second workload threshold (WT2), and heart rate of the second threshold (HRT2). The cross-validation method was used in group B with group A serving as the basis for building the model and the validation dataset. The results presented a multiple linear regression model to predict VO2max (VO2max = 39.027 – 0.405 (weight) – 0.002 (HRT2) + 0.189 (WT2) in ml O2/kg/min-1; r = 0.995 and SEE = 0.96 mlO2/Kg/min-1). The construction of this model allows to demonstrate that it is possible to predict VO2max with a minimum error (SEE = 1.00%) from ventilatory threshold indicators obtained in an incremental test, in healthy non-athlete male. 

Resumen. Las medidas de VO2máx proporcionan eficiencia en la prescripción de ejercicio, debido a una evaluación precisa del nivel de acondicionamiento físico de un individuo. El objetivo del presente estudio fue desarrollar y validar un modelo de predicción de VO2máx basado en indicadores de umbral ventilatorio en la prueba de esfuerzo máximo en hombres sanos no atletas. En consecuencia, 3.147 hombres sanos, no atletas de 20 años o más se ofrecieron voluntariamente para hacerse la prueba en un cicloergómetro usando un protocolo incremental máximo. Los sujetos fueron asignados aleatoriamente en 2 grupos: grupo A (estimación) y grupo B (validación). Las variables independientes fueron: peso en kilogramos (peso), el segundo umbral de carga de trabajo (WT2) y la frecuencia cardíaca del segundo umbral (HRT2). El método de validación cruzada se utilizó en el grupo B y el grupo A sirvió para construir el modelo y el conjunto de datos de validación. Los resultados presentaron un modelo de regresión lineal múltiple para predecir VO2max (VO2max = 39.027 - 0.405 (peso) - 0.002 (HRT2) + 0.189 (WT2) en ml de O2 / kg / min-1; r = 0.995 y SEE = 0.96 mlO2 / Kg / min-1). La construcción de este modelo permite demostrar que es posible predecir el VO2max con un error mínimo (SEE = 1.00%) a partir de los indicadores de umbral ventilatorio obtenidos en una prueba incremental, en hombres sanos que no son atletas.

Palabras clave

Ventilatory threshold; VO2 max; submaximal test, exercise prescription, heart rate (umbral ventilatorio; VO2 max; prueba submáxima, prescripción de ejercicio, frecuencia cardíaca)

Texto completo:

PDF (English)


Akalan, C., Robergs, R. A., & Kravitz, L. (2008). Prediction of VO2max from an individualized submaximal cycle ergometer protocol. J Exerc Physiol Online, 11(2), 1-17.

Brown, S. J., Raman, A., Schlader, Z., & Stannard, S. R. (2013). Ventilatory efficiency in juvenile elite cyclists. Journal of Science and Medicine in Sport,16(3), 266-270. doi: 10.1016/j.jsams.2012.06.010 [published Online First: 27 jul 2012].

Davis, J. A., Storer, T. W., Caiozzo, V. J., & Pham, P. H. (2002). Lower reference limit for maximal oxygen uptake in men and women. Clinical physiology and functional imaging, 22(5), 332-338.

Nogueira, F. S. & Pompeu, F. A. M. S. (2006). Modelos para predição da carga máxima no teste clínico de esforço cardiopulmonar.Arquivos Brasileiros de Cardiologia, 87(2).

Fox, E. L. (1973). A simple, accurate technique for predicting maximal aerobic power. Journal of Applied Physiology, 35(6), 914-916.

George, J. D., Bradshaw, D. I., Hyde, A., Vehrs, P. R., Hager, R. L., & Yanowitz, F. G. (2007). A maximal graded exercise test to accurately predict VO2max in 18–65-year-old adults. Measurement in Physical Education and Exercise Science, 11(3), 149-160.

Hartung, G. H., Blancq, R. J., Lally, D. A., & Krock, L. P. (1995). Estimation of aerobic capacity from submaximal cycle ergometry in women. Medicine and science in sports and exercise, 27(3), 452-457.

Hendriksen, I. J., Zuiderveld, B. O. B., Kemper, H. C., & Bezemer, P. D. (2000). Effect of commuter cycling on physical performance of male and female employees. Medicine and science in sports and exercise, 32(2), 504-510.

Kasch, F. W. (1984). The validity of the Astrand and Sjostrand submaximal tests. Physician Sportsmed, 12(8), 47-54.

Lamberts, R. P., Swart, J., Noakes, T. D., & Lambert, M. I. (2011). A novel submaximal cycle test to monitor fatigue and predict cycling performance.British Journal of Sports Medicine, 45(10), 797-804. doi: 10.1136/bjsm.2009.061325.[published Online First: 20 July 2009].

Malek, M. H., Berger, D. E., Housh, T. J., Coburn, J. W., & Beck, T. W. (2004). Validity of VO2max equations for aerobically trained males and females. Medicine and science in sports and exercise, 36(8), 1427-1432.

Marfell-Jones, M. J., Stewart, A. D., & de Ridder, J. H. (2012). International standards for anthropometric assessment.

Mauger, A. R., & Sculthorpe, N. (2012). A new VO2max protocol allowing self-pacing in maximal incremental exercise. British journal of sports medicine, 46(1), 59-63.

Mookerjee, S., Surmacz, C., Till, M., & Weller, B. (2005). Validation of an equation for predicting energy cost of arm ergometry in women.

European journal of applied physiology, 95(2-3), 115-120.

Mourot, L., Perrey, S., Tordi, N., & Rouillon, J. (2004). Evaluation of fitness level by the Oxygen Uptake Efficiency Slope after a short-term intermittent Endurance training. International journal of sports medicine,25(2), 85-91.

Nunes, R. A. M., de Souza Vale, R. G., Simão, R., de Salles, B. F., Reis, V. M., da Silva Novaes, J., ... & da Cunha Medeiros, A. (2009). Prediction of Vo2max during cycle ergometry based on submaximal ventilatory indicators.The Journal of Strength & Conditioning Research, 23(6), 1745-1751. doi: 10.1519/JSC.0b013e3181b45c49 [published Online First: 23 sep 2009].

Pires, F. O., Lima-Silva, A. E., & Oliveira, F. R. (2005). Differences among variables of determination of ventilatory thresholds. Braz J Kinanthrop Human Perfor, 7, 20-28.

Raviv, S., & Netz, Y. (2007). Age, gender, and level of activity as moderators of personal incentives to physical activity in Israel. The Journal of psychology, 141(3), 241-262.

Schnohr, P., O’Keefe, J. H., Marott, J. L., Lange, P., & Jensen, G. B. (2015). Dose of jogging and long-term mortality: the Copenhagen City Heart Study.Journal of the American College of Cardiology, 65(5), 411-419. doi: 10.1016/j.jacc.2014.11.023 [published Online First: 10 Feb 2014].

Siconolfi, S. F., Cullinane, E. M., Carleton, R. A., & Thompson, P. D. (1981). Assessing VO2max in epidemiologic studies: modification of the Astrand-Rhyming test. Medicine and science in sports and exercise, 14(5), 335-338.

Storer, T. W., Davis, J. A., & Caiozzo, V. J. (1990). Accurate prediction of VO2max in cycle ergometry. Med Sci Sports Exerc, 22(5), 704-12.

Tanaka, H., & Swensen, T. (1998). Impact of resistance training on endurance performance. Sports medicine, 25(3), 191-200.

Vainionpää, A., Korpelainen, R., Kaikkonen, H., Knip, M., Leppäluoto, J., & Jämsä, T. I. M. O. (2007). Effect of impact exercise on physical performance and cardiovascular risk factors. Medicine and science in sports and exercise,39(5), 756-763.

World Medical Association Declaration of Helsink. (1997). Recommendations guiding physicians in biomedical research involving human subjects. JAMA, 277, 925-926.

Enlaces refback

  • No hay ningún enlace refback.