Relationship between lower limb anthropometry and temporo-spatial parameters in gait of young adults (Relación entre la antropometría de miembro inferior y los parámetros temporo-espaciales en la marcha de adultos jóvenes)

Oscar Valencia, Oscar Araneda, Marcela Cárcamo, Felipe Carpes, Rodrigo Guzmán-Venegas

Resumen


Temporo-spatial parameters (TSP) are commonly used to characterize human gait. These help to differentiate population groups in different conditions of gait, but can be influenced by lower limb anthropometry. Different strategies are assumed to normalize TSP and permit comparison among people. However, it is not clear how dimensions of the different lower limb segments influence gait TSP. The aim of this study was to verify the relationship between gait TSP and length of the thigh, leg and foot in young adults. The body segments lengths were adjusted for individual height and correlated with gait TSP. We found a correlation between foot length and step width (r = 0.44). When data were adjusted for gender, step time, stride time, cadence and gait speed correlated with foot length in men (r = 0.51, 0.49, -0.49 and -0.43, respectively). Among women, these same TSP correlated only with thigh length (r = 0.43, 0.46, -0.47 and -0.37, respectively). Step and stride length correlated with leg (r = 0.46 and 0.48) and thigh length (r = 0.44 and 0.44) only in men. In conclusion, anthropometric parameters influence TSP differentially for men and women. These data should be considered when studying population groups including people from both genders.


Resumen. Los parámetros temporo-espaciales (PTE) son comúnmente usados para caracterizar la marcha humana. Estos ayudan a diferenciar grupos de poblaciones en diferentes condiciones de marcha, pero pueden ser influenciados por la antropometría de miembro inferior. Diferentes estrategias asumen la normalización de PTE y permiten comparar entre personas. Sin embargo, no está claro como las dimensiones de los diferentes segmentos de miembro inferior influyen los PTE en la marcha. El objetivo de este estudio fue verificar la relación entre los PTE de la marcha y la longitud del muslo, pierna y pie en adultos jóvenes. Las longitudes de los segmentos corporales fueron ajustadas por la altura de cada persona y correlacionadas con los PTE de la marcha. Se encontró una correlación entre la longitud del pie y el ancho del paso (r= 0.44). Cuando los datos fueron ajustados por género, el tiempo del paso, tiempo de la zancada, cadencia y velocidad de la marcha correlacionaron con la longitud del pie en hombres (r = 0.51, 0.49, -0.49 and -0.43, respectivamente). Entre las mujeres, estos mismos PTE solo correlacionaron con la longitud del muslo (r = 0.43, 0.46, -0.47 and -0.37, respectivamente). La longitud del paso y la zancada correlacionaron con la longitud de la pierna (r = 0.46 and 0.48) y el muslo (r = 0.44 and 0.44) solo en hombres. En conclusión, los parámetros antropométricos influyen de forma diferente los PTE para hombre y mujeres. Estos datos podrían ser considerados cuando se estudian grupos de poblaciones incluyendo personas de ambos géneros.


Palabras clave


human gait, temporo-spatial parameters, lower limb anthropometry (marcha humana, parámetros temporo-espaciales, antropometría de miembro inferior)

Texto completo:

PDF (English)

Referencias


Buendía-Lozada, E. R. P., Cruz-Gómez, M. A., Flores-Chico, B., Aguilar-Enríquez, R. I., Villagrán-Arroyo, E. I., Sánchez-Flores, O., & López-de-la-Rosa, L. E. (2017). Ecuaciones de predicción de pliegues cutáneos en escolares. Revista Internacional de Medicina Y Ciencias de La Actividad Física Y Del Deporte, 17(65), 27–41.

Cadenas-Sánchez, C., López-Contreras, G., & Arellano, R. (2015). Revisión de la biomecánica de la marcha en medio acuático vs terrestre. Retos, 28, 128–133.

Cámara Tobalina, J. (2011). Análisis de la marcha: sus fases y variables espacio-temporales. Entramado, 7(1), 160–173.

Chao, E. Y., Laughman, R. K., Schneider, E., & Stauffer, R. N. (1983). Normative data of knee joint motion and ground reaction forces in adult level walking. Journal of Biomechanics, 16(3), 219–233.

Cimolin, V., & Galli, M. (2014). Summary measures for clinical gait analysis: A literature review. Gait & Posture, 39(4), 1005–1010.

Davis, R. B., Õunpuu, S., Tyburski, D., & Gage, J. R. (1991). A gait analysis data collection and reduction technique. Human Movement Science, 10(5), 575–587.

Elvira, J., Plaza, D., Valenciano, A., & Montero, C. (2017). Influencia del calzado en el movimiento del pie durante la marcha y la carrera en niños y niñas de 6 y 7 años. Retos, 31, 128–132.

Eng, J. J., & Winter, D. A. (1995). Kinetic analysis of the lower limbs during walking: What information can be gained from a three-dimensional model? Journal of Biomechanics, 28(6), 753–758.

Fessler, D. M. T., Haley, K. J., & Lal, R. D. (2005). Sexual dimorphism in foot length proportionate to stature. Annals of Human Biology, 32(1), 44–59.

Froehle, A. W., Nahhas, R. W., Sherwood, R. J., & Duren, D. L. (2013). Age-related changes in spatiotemporal characteristics of gait accompany ongoing lower limb linear growth in late childhood and early adolescence. Gait & Posture, 38(1), 14–19.

Ganley, K. J., & Powers, C. M. (2005). Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data. Gait & Posture, 21(2), 141–145.

Guedes, D. P., Franzini, P. C., Júnior, R. P., Maria, J., & Morales, M. (2017). Anthropometry and Physical Fitness of Latin American Adolescents. Retos, 31, 264–270.

Hausdorff, J. M., Zemany, L., Peng, C.-K., & Goldberger, A. L. (1999). Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. Journal of Applied Physiology (Bethesda, Md. : 1985), 86(3), 1040–1047.

Hof, A. L. (1996). Scaling gait data to body size. Gait & Posture, 4(3), 222–223.

Hollman, J. H., McDade, E. M., & Petersen, R. C. (2011). Normative spatiotemporal gait parameters in older adults. Gait & Posture, 34(1), 111–118.

Kadaba, M. P., Ramakrishnan, H. K., & Wootten, M. E. (1990). Measurement of lower extremity kinematics during level walking. Journal of Orthopaedic Research, 8(3), 383–392.

Kirtley, C. (2006). Clinical gait analysis: theory and practice (First, pp. 15–37).

Krishan, K., & Kanchan, T. (2013). Foot length is a functional parameter for assessment of height. The Foot, 23(1), 54–55.

Krishan, K., Kanchan, T., Passi, N., & DiMaggio, J. A. (2012). Stature estimation from the lengths of the growing foot—A study on North Indian adolescents. The Foot, 22(4), 287–293.

Lim, H.-C., Bae, J.-H., Yoon, J.-Y., Kim, S.-J., Kim, J.-G., & Lee, J.-M. (2013). Gender differences of the morphology of the distal femur and proximal tibia in a Korean population. The Knee, 20, 26–30.

Lugade, V., Lin, V., & Chou, L.-S. (2011). Center of mass and base of support interaction during gait. Gait & Posture, 33(3), 406–411.

Nor, F. M., Abdullah, N., Mustapa, A.-M., Qi Wen, L., Faisal, N. A., & Ahmad Nazari, D. A. A. (2013). Estimation of stature by using lower limb dimensions in the Malaysian population. Journal of Forensic and Legal Medicine, 20(8), 947–952.

O’Neill, M. C., Lee, L.-F., Demes, B., Thompson, N. E., Larson, S. G., Stern, J. T., & Umberger, B. R. (2015). Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking. Journal of Human Evolution, 86, 32–42.

Pheasant, S., & Haslegrave, C. (2016). Bodyspace: Anthropometry, ergonomics and the design of work (Third).

Raichlen, D. A., Armstrong, H., & Lieberman, D. E. (2011). Calcaneus length determines running economy: Implications for endurance running performance in modern humans and Neandertals. Journal of Human Evolution, 60(3), 299–308.

Rolian, C., Lieberman, D. E., Hamill, J., Scott, J. W., & Werbel, W. (2009). Walking, running and the evolution of short toes in humans. Journal of Experimental Biology, 212(5), 713–721.

Rosker, J., Markovic, G., & Sarabon, N. (2011). Effects of vertical center of mass redistribution on body sway parameters during quiet standing. Gait & Posture, 33(3), 452–456.

Šentija, D., Rakovac, M., & Babić, V. (2012). Anthropometric characteristics and gait transition speed in human locomotion. Human Movement Science, 31(3), 672–682.

Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 6(1), 35–39.

Titianova, E. B., Pitkänen, K., Pääkkönen, A., Sivenius, J., & Tarkka, I. M. (2003). Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke. American Journal of Physical Medicine & Rehabilitation, 82(10), 778–786.

Tobias, D. K. E., Duke George, D. M., Vitalis, M. E., & Baxter-Grillo, P. D. (2014). Sexual Dimorphism of Correlations of feet anthropometric parameters and Height (stature) among Undergraduate students of a University, Western Nigeria. IOSR Journal of Dental and Medical Sciences, 13(4), 46–53.

Tomassoni, D., Traini, E., & Amenta, F. (2014). Gender and age related differences in foot morphology. Maturitas, 79, 421–427.


Enlaces refback

  • No hay ningún enlace refback.