Modificación de patrones cinemáticos y electromiográficos en extremidad inferior por el uso de celular (Modification of kinematic and electromyographic patterns in the lower limb by the use of cell phones)

Palabras clave: Electromiografía, cinemática, tarea dual, marcha con obstáculo (Electromyography, kinematics, dual task, gait with obstacle)

Resumen

Las lesiones de transeúntes relacionadas al uso de teléfono celular han aumentado en relación con el total de accidentes peatonales. El objetivo de este estudio fue comparar variables cinemáticas y electromiográficas de ambas extremidades inferiores al enfrentar un obstáculo, con (CC) y sin (SC) el uso de celular. Diez mujeres jóvenes fueron evaluadas, las cuales caminaron y enfrentaron un obstáculo CC y SC. Con un modelo biomecánico 3D se evaluó la cinemática de extremidad inferior (plano sagital de cadera, rodilla, tobillo, junto al “toe clearance”). Al mismo tiempo se registró la actividad electromiográfica (EMG) de los siguientes músculos: tibial anterior (TA), gastrocnemio medial (GM), recto anterior (RA) y bíceps femoral (BF). Se calculó la amplitud EMG promedio de cada músculo, y el porcentaje de coactivación muscular entre: TA-GM y RA-BF. Se analizó la estrategia de ambas piernas, considerando un primer (P1) y segundo paso (P2) al cruzar el obstáculo, comparando entre una marcha CC vs CS. Según los resultados, la marcha CC incrementa el toe clearance, flexión de cadera, y la amplitud del GM, observado tanto en P1 como P2 al cruzar el obstáculo. Adicionalmente, el P2 reveló un incremento en la flexión de rodilla y tobillo. Por otro lado, la amplitud del TA y coactivación muscular entre TA-GM también aumentó CC en el P2. En conclusión, las variables cinemáticas y electromiográficas en las extremidades inferiores se modifican al cruzar un obstáculo CC. Estos hallazgos podrían indicar una estrategia protectora durante la tarea dual evaluada, minimizar el riesgo de caída.

Abstract. Pedestrian injuries related to the use of cell phone have increased in relation to the total number of pedestrian accidents. The aim of this study was to compare kinematic and electromyographic variables in both lower limbs at facing an obstacle, with (WC) and without (WoC) the use of a cell phone. Ten young women were evaluated, while walking and facing an obstacle WC and WoC. A 3D biomechanical model was used to evaluate the lower limb kinematics (hip, knee, ankle in the sagittal plane, together with “toe clearance”). At the same time, the electromyographic (EMG) activity was registered in the following muscles: tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF) and biceps femoris (BF). The mean EMG amplitude of each muscle and the muscular coactivation percentage between: TA-GM and RA-BF were calculated. The strategy for both lower limbs considering the first (P1) and the second step (P2) were analyzed when crossing the obstacle, comparing between gait WC vs WoC. According to results, the gait WC increase the toe clearance, hip flexion, and the GM amplitude, observed both in P1 as P2 when the person crossed the obstacle. Furthermore, the P2 revealed an increase in the knee and ankle flexion. On the other hand, the TA amplitude and the muscular coactivation between TA-GM also increased WC in the P2. In conclusion, the kinematic and electromyographic variables in the lower limbs are modified when crossing an obstacle WC. These findings could indicate a protective strategy during the dual-task evaluated, minimizing the risk of falling.

Biografía del autor/a

Oscar David Valencia Cayupán, Universidad de los Andes
Docente investigador, Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo, Escuela de Kinesiología, Universidad de los Andes.
María José Hudson, Universidad de los Andes
Docente investigadora parcial. Escuela de Kinesiología, Universidad de los Andes.
Felipe Carpes, Universidade Federal do Pampa
Profesor titular Universidade Federal do Pampa, Uruguaiana, Brasil.
Marcos Kunzler, Universidade Federal do Pampa
Profesor titular Universidade Federal do Pampa, Uruguaiana, Brasil.
Fernanda Gándara, Universidad de los Andes
Kinesióloga, egresada de la Universidad de los Andes.
Isidora Le Roy, Universidad de los Andes
Kinesióloga, egresada de la Universidad de los Andes.
Rodrigo Guzmán-Venegas, Universidad de los Andes
Docente investigador, Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo, Escuela de Kinesiología, Universidad de los Andes.

Citas

Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., & Cockburn, J. (2011). Cognitive motor interference while walking: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 715–728. https://doi.org/10.1016/j.neubiorev.2010.08.008

Caramia, C., Bernabucci, I., D’Anna, C., De Marchis, C., & Schmid, M. (2017). Gait parameters are differently affected by concurrent smartphone-based activities with scaled levels of cognitive effort. PLOS ONE, 12(10), e0185825. https://doi.org/10.1371/journal.pone.0185825

Chen, S.-H., Lo, O.-Y., Kay, T., & Chou, L.-S. (2018). Concurrent phone texting alters crossing behavior and induces gait imbalance during obstacle crossing. Gait & Posture, 62, 422–425. https://doi.org/10.1016/j.gaitpost.2018.04.004

Dadashi, F., Mariani, B., Rochat, S., Büla, C., Santos-Eggimann, B., & Aminian, K. (2013). Gait and Foot Clearance Parameters Obtained Using Shoe-Worn Inertial Sensors in a Large-Population Sample of Older Adults. Sensors, 14(1), 443–457. https://doi.org/10.3390/s140100443

Falconer, K., & Winter, D. A. (1985). Quantitative assessment of co-contraction at the ankle joint in walking. Electromyography and Clinical Neurophysiology, 25(2–3), 135–149. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3987606

Flores-Leon, A. F., Soto, V., Araneda, O. F., Guzman-Venegas, R., & De La Rosa, F. J. B. (2019). Muscle activity of the Lumbo-pelvic-hip complex in three isometric exercises using TRX ® rip trainerTM. Retos, 35, 216–220. Retrieved from https://recyt.fecyt.es/index.php/retos/article/view/63922/40928

Gianakos, A., Yasui, Y., Murawski, C. D., & Kennedy, J. G. (2016). Effects of gastrocnemius recession on ankle motion, strength, and functional outcomes: a systematic review and national healthcare database analysis. Knee Surgery, Sports Traumatology, Arthroscopy, 24(4), 1355–1364. https://doi.org/10.1007/s00167-015-3939-3

Guadagnin, E. C., da Rocha, E. S., Duysens, J., & Carpes, F. P. (2016). Does physical exercise improve obstacle negotiation in the elderly? A systematic review. Archives of Gerontology and Geriatrics, 64, 138–145. https://doi.org/10.1016/j.archger.2016.02.008

Guadagnin, E. C., Rocha, E. S. da, Bobbert, M., Duysens, J., & Carpes, F. P. (2020). Do older women with a fall history cross obstacles differently than older women with no fall history? Human Movement, 21(3), 47–53. https://doi.org/10.5114/hm.2020.91345

Hatfield, J., & Murphy, S. (2007). The effects of mobile phone use on pedestrian crossing behaviour at signalised and unsignalised intersections. Accident Analysis & Prevention, 39(1), 197–205. https://doi.org/10.1016/j.aap.2006.07.001

Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., … Hägg, G. (1999). European Recommendations for Surface ElectroMyoGraphy Results of the SENIAM project. Roessingh Research and Development.

Hsu, W.-C., Liu, M.-W., & Lu, T.-W. (2016). Biomechanical risk factors for tripping during obstacle—Crossing with the trailing limb in patients with type II diabetes mellitus. Gait & Posture, 45, 103–109. https://doi.org/10.1016/j.gaitpost.2016.01.010

Lamberg, E. M., & Muratori, L. M. (2012). Cell phones change the way we walk. Gait & Posture, 35(4), 688–690. https://doi.org/10.1016/j.gaitpost.2011.12.005

Licence, S., Smith, R., McGuigan, M. P., & Earnest, C. P. (2015). Gait Pattern Alterations during Walking, Texting and Walking and Texting during Cognitively Distractive Tasks while Negotiating Common Pedestrian Obstacles. PLOS ONE, 10(7), e0133281. https://doi.org/10.1371/journal.pone.0133281

MacLellan, M. J. (2017). Modular organization of muscle activity patterns in the leading and trailing limbs during obstacle clearance in healthy adults. Experimental Brain Research, 235(7), 2011–2026. https://doi.org/10.1007/s00221-017-4946-z

Nasar, J. L., & Troyer, D. (2013). Pedestrian injuries due to mobile phone use in public places. Accident Analysis & Prevention, 57, 91–95. https://doi.org/10.1016/j.aap.2013.03.021

O’Neill, M. C., Lee, L.-F., Demes, B., Thompson, N. E., Larson, S. G., Stern, J. T., & Umberger, B. R. (2015). Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking. Journal of Human Evolution, 86, 32–42. https://doi.org/10.1016/j.jhevol.2015.05.012

Pan, H.-F., Hsu, H.-C., Chang, W.-N., Renn, J.-H., & Wu, H.-W. (2016). Strategies for obstacle crossing in older adults with high and low risk of falling. Journal of Physical Therapy Science, 28(5), 1614–1620. https://doi.org/10.1589/jpts.28.1614

Pijnappels, M., Bobbert, M. F., & Van Dieën, J. H. (2006). EMG modulation in anticipation of a possible trip during walking in young and older adults. Journal of Electromyography and Kinesiology, 16(2), 137–143. https://doi.org/10.1016/j.jelekin.2005.06.011

Shumway-Cook, A., Woollacott, M., Kerns, K. A., & Baldwin, M. (1997). The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 52(4). https://doi.org/10.1093/gerona/52A.4.M232

Valencia, O., Araneda, O., Cárcamo, M., Carpes, F., & Guzmán-Venegas, R. (2018). Relationship between lower limb anthropometry and temporo-spatial parameters in gait of young adults. Retos, 33, 1–258. Retrieved from https://recyt.fecyt.es/index.php/retos/article/view/58136/36652

Valencia, O., Cristi, I., Ahumada, D., Meza, K., Salas, R., Weinstein, A., & Guzmán-Venegas, R. (2020). The initial impact with forefoot increases the muscular activity of gastrocnemius during running. A quantitative study of electromyographic activity. Retos, 38, 271–275. Retrieved from https://recyt.fecyt.es/index.php/retos/article/view/73955/49644

Wells, H. L., McClure, L. A., Porter, B. E., & Schwebel, D. C. (2018). Distracted Pedestrian Behavior on two Urban College Campuses. Journal of Community Health, 43(1), 96–102. https://doi.org/10.1007/s10900-017-0392-x

Yogev-Seligmann, G., Rotem-Galili, Y., Mirelman, A., Dickstein, R., Giladi, N., & Hausdorff, J. M. (2010). How Does Explicit Prioritization Alter Walking During Dual-Task Performance? Effects of Age and Sex on Gait Speed and Variability. Physical Therapy, 90(2), 177–186. https://doi.org/10.2522/ptj.20090043

Publicado
2020-07-11
Cómo citar
Valencia Cayupán, O., Hudson, M. J., Carpes, F., Kunzler, M., Gándara, F., Le Roy, I., & Guzmán-Venegas, R. (2020). Modificación de patrones cinemáticos y electromiográficos en extremidad inferior por el uso de celular (Modification of kinematic and electromyographic patterns in the lower limb by the use of cell phones). Retos, (39), 354-358. https://doi.org/10.47197/retos.v0i39.77730
Sección
Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas