Actividad de músculos intrínsecos del pie durante un agarre máximo. Un estudio descriptivo en corredores (Intrinsic foot muscle activity during maximum grip. A descriptive study in runners)

Autores/as

  • Oscar Valencia Universidad de los Andes https://orcid.org/0000-0001-7568-4169
  • Carolina Naranjo Facultad de medicina, Departamento de clínicas, Carrera de Kinesiología, Universidad Católica del Norte, Chile.
  • Hilda Aravena Facultad de medicina, Departamento de clínicas, Carrera de Kinesiología, Universidad Católica del Norte, Chile. https://orcid.org/0000-0002-7287-3957
  • Rodrigo Barreto Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo, Escuela de Kinesiología, Universidad de los Andes, Chile. https://orcid.org/0009-0006-0910-799X
  • Danae Bugeño Facultad de medicina, Departamento de clínicas, Carrera de Kinesiología, Universidad Católica del Norte, Chile. https://orcid.org/0009-0008-8636-0723
  • Felipe Palma Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo, Escuela de Kinesiología, Universidad de los Andes, Chile. https://orcid.org/0000-0002-1342-2961

DOI:

https://doi.org/10.47197/retos.v60.107655

Palabras clave:

Músculos intrínsecos del pie, Agarre máximo del pie, Electromiografía de superficie, Corredores aficionados

Resumen

El objetivo de este estudio fue describir el porcentaje de activación de los músculos intrínsecos del pie (MIP) durante el gesto de agarre máximo del pie, en corredores recreacionales. En este estudio descriptivo, se evaluaron 10 corredores aficionados (edad= 22,5 ± 2,8 años; estatura= 1,6 ± 0,0 m; peso= 67,6 ±12,0kg; sexo= cinco mujeres, cinco hombres). Todos los voluntarios dieron su consentimiento informado previamente. La actividad mioeléctrica se evaluó en seis MIP: extensor corto de los dedos (ECD), primer interóseo dorsal (ID), abductor corto del quinto dedo (AbdQD), flexor corto de los dedos/cuadrado plantar (FCD/CP), flexor corto del hallux (FCH) y abductor del hallux (AbdH). Esta medición se llevó a cabo mediante electromiografía (EMG) de superficie durante un agarre máximo. La amplitud de estas señales fue expresada como porcentaje de su amplitud durante una contracción voluntaria máxima (%CVM), la cual fue capturada en pruebas específicas para cada MIP. Todos los datos fueron analizados con estadística descriptiva, usando medidas de centralización (promedio) y dispersión (desviación estándar). Los músculos FCD/CP (71,0 ± 10,9%CVM), ID (62,4 ± 24,1%CVM) y AbdQD (46,1 ± 18,1%CVM) mostraron una mayor actividad durante el agarre máximo. En contraste, el músculo que exhibió la menor actividad durante el agarre fue el ECD (7,5 ± 5,7%CVM). En conclusión, se observó una variación en los niveles de actividad para cada MIP durante el agarre, destacando una mayor activación en el músculo FCD/CP, el cual está directamente implicado en la flexión plantar de la articulación metatarsofalángica.

Palabras clave: músculos intrínsecos del pie, agarre máximo del pie, electromiografía de superficie, corredores aficionados.

Abstract. This study aimed to describe the percentage of intrinsic foot muscles (IFM) activation during maximal toe grip in amateur runners. In this descriptive study, ten amateur runners (age = 22.5 ± 2.8 years; height = 1.67 ± 0.08 m; weight = 67.6 ± 12.0 kg; sex= five female, five male) were evaluated. All volunteers provided prior informed consent. Myoelectric activity was assessed in six IFM: extensor digitorum brevis (EDB), first dorsal interossei (DI), abductor digiti minimi (ADM), flexor digitorum brevis/quadratus plantae (FDB/QP), flexor hallucis brevis (FHB), and abductor hallucis (AH). This measurement was conducted through surface electromyography (EMG) during maximum toe grip. The amplitude of these signals was expressed as a percentage of their peak amplitude during a maximum voluntary contraction (%MCV), which was captured in specific tests for each IFM. All data were analyzed using descriptive statistics, including measures of central tendency (mean) and dispersion (standard deviation). The FDB/QP (71.0 ± 10.9%MVC), DI (62.4 ± 24.1%MVC), and ADM (46.1 ± 18.1%MVC) muscles exhibited greater activity during maximum toe grip. In contrast, the muscle that displayed the lowest activity during grip was the EDB (7.5 ± 5.7%MVC). In conclusion, it was observed that the level of activation of each IFM during grip varied, with higher activation in the FDB/QP muscle, which is directly involved in plantar flexion of the metatarsophalangeal joint.

Keywords: intrinsic foot muscles, toe grip, surface electromyography, amateur runners.

Biografía del autor/a

Oscar Valencia , Universidad de los Andes

Docente investigador, Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo, Escuela de Kinesiología, Universidad de los Andes.

Citas

Alam, F., Raza, S., Moiz, J. A., Bhati, P., Anwer, S., & Alghadir, A. (2019). Effects of selective strengthening of tibialis posterior and stretching of iliopsoas on navicular drop, dynamic balance, and lower limb muscle activity in pronated feet: A randomized clinical trial. The Physician and Sportsmedicine, 47(3), 301–311. https://doi.org/10.1080/00913847.2018.1553466

Arai, R., Fuchigami, M., Hatamura, K., Yamamoto, K., & Yoshimatsu, T. (2023). Relationship between toe grip strength and dynamic balance in older adult patients with femoral neck fracture. Journal of Physical Therapy Science, 35(5), 2023–002. https://doi.org/10.1589/jpts.35.384

Araya, D., López, J., Villalobos, G., Guzmán-Venegas, R., & Valencia, O. (2021). Changes in muscle coactivation dur-ing running: a comparison between two techniques, forefoot vs rearfoot. Archivos de Medicina Del Deporte, 38(5), 332–336. https://doi.org/10.18176/archmeddeporte.00059

Branthwaite, H., Aitkins, C., Lindley, S., & Chockalingam, N. (2019). Surface electromyography of the foot: A proto-col for sensor placement. The Foot, 41, 24–29. https://doi.org/10.1016/j.foot.2019.07.001

Chen, K.-C., Yeh, C.-J., Kuo, J.-F., Hsieh, C.-L., Yang, S.-F., & Wang, C.-H. (2011). Footprint analysis of flatfoot in preschool-aged children. European Journal of Pediatrics, 170(5), 611–617. https://doi.org/10.1007/s00431-010-1330-4

Di Nardo, F., Strazza, A., Palmieri, M. S., Mengarelli, A., Burattini, L., Orsini, O., Bortone, A., & Fioretti, S. (2018). Detection of surface-EMG activity from the extensor digitorum brevis muscle in healthy children walking. Physiologi-cal Measurement, 39(1), 014001. https://doi.org/10.1088/1361-6579/aa9d36

Farris, D. J., Kelly, L. A., Cresswell, A. G., & Lichtwark, G. A. (2019). The functional importance of human foot mus-cles for bipedal locomotion. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1645–1650. https://doi.org/10.1073/pnas.1812820116

Garth, W. P., & Miller, S. T. (1989). Evaluation of claw toe deformity, weakness of the foot intrinsics, and posterome-dial shin pain. The American Journal of Sports Medicine, 17(6), 821–827. https://doi.org/10.1177/036354658901700617

Hur, M., Kim, J., Woo, J., Choi, B., Kim, H., & Lee, K. (2011). An anatomic study of the quadratus plantae in relation to tendinous slips of the flexor hallucis longus for gait analysis. Clinical Anatomy, 24(6), 768–773. https://doi.org/10.1002/ca.21170

Ilayperuma, I. (2012). On the Variations of the Muscle Flexor Digitorum Brevis: Anatomical Insight. International Journal of Morphology, 30(1), 337–340. https://doi.org/10.4067/S0717-95022012000100059

Jastifer, J. R. (2023). Intrinsic muscles of the foot: Anatomy, function, rehabilitation. Physical Therapy in Sport, 61, 27–36. https://doi.org/10.1016/J.PTSP.2023.02.005

Kakouris, N., Yener, N., & Fong, D. T. P. (2021). A systematic review of running-related musculoskeletal injuries in runners. Journal of Sport and Health Science, 10(5), 513–522. https://doi.org/10.1016/J.JSHS.2021.04.001

Kalin, P. J., & Hirsch, B. E. (1987). The origins and function of the interosseous muscles of the foot. Journal of Anatomy, 152, 83–91. http://www.ncbi.nlm.nih.gov/pubmed/3654378

Kurihara, T., Yamauchi, J., Otsuka, M., Tottori, N., Hashimoto, T., & Isaka, T. (2014). Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique. Journal of Foot and Ankle Research, 7(1), 26. https://doi.org/10.1186/1757-1146-7-26

Kusagawa, Y., Kurihara, T., Maeo, S., Sugiyama, T., Kanehisa, H., & Isaka, T. (2022). Associations between the size of individual plantar intrinsic and extrinsic foot muscles and toe flexor strength. Journal of Foot and Ankle Research, 15(1), 22. https://doi.org/10.1186/s13047-022-00532-9

Lee, D. Y., Seo, S. G., Kim, E. J., Kim, S. J., Lee, K. M., & Choi, I. H. (2016). Inter-segmental motions of the foot in healthy adults: Gender difference. Journal of Orthopaedic Science, 21(6), 804–809. https://doi.org/10.1016/j.jos.2016.07.025

Lopes, A. D., Hespanhol, L. C., Yeung, S. S., & Costa, L. O. P. (2012). What are the Main Running-Related Musculo-skeletal Injuries? Sports Medicine, 42(10), 891–905. https://doi.org/10.2165/11631170-000000000-00000

Nguyen, A.-D., & Shultz, S. J. (2007). Sex Differences in Clinical Measures of Lower Extremity Alignment. Journal of Orthopaedic & Sports Physical Therapy, 37(7), 389–398. https://doi.org/10.2519/jospt.2007.2487

Okamura, K., Kanai, S., Hasegawa, M., Otsuka, A., & Oki, S. (2019). Effect of electromyographic biofeedback on learning the short foot exercise. Journal of Back and Musculoskeletal Rehabilitation, 32(5), 685–691. https://doi.org/10.3233/BMR-181155

Oliveira, G. M., Lopes, A. D., & Hespanhol, L. (2021). Are there really many runners out there? Is the proportion of runners increasing over time? A population-based 12-year repeated cross-sectional study with 625,460 Brazilians. Journal of Science and Medicine in Sport, 24(6), 585–591. https://doi.org/10.1016/j.jsams.2020.11.014

Park, D.-J., & Hwang, Y.-I. (2020). Comparison of the Intrinsic Foot Muscle Activities between Therapeutic and Three-Dimensional Foot-Ankle Exercises in Healthy Adults: An Explanatory Study. International Journal of Environ-mental Research and Public Health, 17(19), 7189. https://doi.org/10.3390/ijerph17197189

Ridge, S. T., Rowley, K. M., Kurihara, T., Mcclung, M., Tang, J., Reischl, S., & Kulig, K. (2022). Contributions of In-trinsic and Extrinsic Foot Muscles during Functional Standing Postures. https://doi.org/10.1155/2022/7708077

Sauer, L. D., Beazell, J., & Hertel, J. (2011). Considering the Intrinsic Foot Musculature in Evaluation and Rehabilita-tion for Lower Extremity Injuries. Athletic Training & Sports Health Care, 3(1), 43–47. https://doi.org/10.3928/19425864-20100730-02

Smith, R. E., Lichtwark, G. A., & Kelly, L. A. (2022). Flexor digitorum brevis utilizes elastic strain energy to contrib-ute to both work generation and energy absorption at the foot. Journal of Experimental Biology, 225(8). https://doi.org/10.1242/jeb.243792

Soma, M., Murata, S., Kai, Y., Nakae, H., Satou, Y., Murata, J., & Miyazaki, J. (2016). Examinations of factors influ-encing toe grip strength. Journal of Physical Therapy Science, 28(11), 3131–3135. https://doi.org/10.1589/JPTS.28.3131

Soysa, A., Hiller, C., Refshauge, K., & Burns, J. (2012). Importance and challenges of measuring intrinsic foot muscle strength. Journal of Foot and Ankle Research, 5(1), 29. https://doi.org/10.1186/1757-1146-5-29

Taddei, U. T., Matias, A. B., Duarte, M., & Sacco, I. C. N. (2020). Foot Core Training to Prevent Running-Related Injuries: A Survival Analysis of a Single-Blind, Randomized Controlled Trial. The American Journal of Sports Medicine, 48(14), 3610–3619. https://doi.org/10.1177/0363546520969205

Tsuyuguchi, R., Kurose, S., Seto, T., Takao, N., Tagashira, S., Tsutsumi, H., Otsuki, S., & Kimura, Y. (2018). Toe grip strength in middle-aged individuals as a risk factor for falls. The Journal of Sports Medicine and Physical Fitness, 58(9), 1325–1330. https://doi.org/10.23736/S0022-4707.17.07473-4

Valencia, O., Araneda, O., Cárcamo, M., Carpes, F., & Guzmán-Venegas, R. (2018). Relationship between lower limb anthropometry and temporo-spatial parameters in gait of young adults. Retos, 33, 1–258. https://recyt.fecyt.es/index.php/retos/article/view/58136/36652

Valencia, O., Cristi, I., Ahumada, D., Meza, K., Salas, R., Weinstein, A., & Guzmán-Venegas, R. (2020). The initial impact with forefoot increases the muscular activity of gastrocnemius during running. A quantitative study of elec-tromyographic activity. Retos, 38, 271–275. https://doi.org/https://doi.org/10.47197/retos.v38i38.73955

Valencia, O., Weinstein, A., Salas, R., Guzmán-Venegas, R., Arvanitidis, M., & Martinez-Valdes, E. (2022). Temporal differences in the myoelectric activity of lower limb muscles during rearfoot and forefoot running: A statistical par-ametric mapping approach. European Journal of Sport Science, 1–9. https://doi.org/10.1080/17461391.2022.2081094

Wei, Z., Zeng, Z., Liu, M., & Wang, L. (2022). Effect of intrinsic foot muscles training on foot function and dynamic postural balance: A systematic review and meta-analysis. PLOS ONE, 17(4), e0266525. https://doi.org/10.1371/journal.pone.0266525

Descargas

Publicado

2024-10-02

Cómo citar

Valencia, O., Naranjo, C., Aravena, H., Barreto, R., Bugeño, D., & Palma, F. (2024). Actividad de músculos intrínsecos del pie durante un agarre máximo. Un estudio descriptivo en corredores (Intrinsic foot muscle activity during maximum grip. A descriptive study in runners). Retos, 60, 1298–1303. https://doi.org/10.47197/retos.v60.107655

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas