Moderate intensity continuous and interval training increased VEGF and decreased cholesterol levels in female rats high calorie diet

Authors

  • Fauqi Amalia Universitas Airlangga, Indonesia https://orcid.org/0009-0009-7773-6685
  • Gadis Meinar Sari Universitas Airlangga
  • Lina Lukitasari Universitas Airlangga, Indonesia
  • Zulhabri Othman Management and Science University
  • Lilik Herawati Universitas Airlangga, Indonesia
  • Ahmad Riyono Universitas Airlangga, Indonesia https://orcid.org/0009-0008-9533-464X

DOI:

https://doi.org/10.47197/retos.v59.107004

Keywords:

obesity, interval training, continuous training, cholesterol, VEGF

Abstract

This study investigated the impact of moderate-intensity continuous training and moderate-intensity interval training on VEGF and cholesterol levels in female rats given high-calorie diet. The research was a randomized post-test with only a control group design. Thirty-two female rats were randomly assigned to four groups, P1 (n=8, standard diet group), P2 (n=8, high-calorie diet group), P3 (n=8, combination high-calorie diet and moderate intensity continuous training), P4 (n=8, combination high-calorie diet and moderate intensity interval training). The P2,P3,P4 consisted of an ad libitum standard diet plus a dextrose solution for 4 weeks. The intervention group of P3 underwent swimming plus 6% load of body weight for 10 minutes in first week, 20 minutes in second week, and 30 minutes in third and fourth week. The intervention group of P4 underwent swimming with a ratio of 2:1 between swimming and rest time, plus 6% load of body weight, progressively increased each week. Cholesterol and VEGF levels were measured post-intervention. The mean cholesterol levels in both high-calorie diet group combined with MICT and MIIT were significantly lower (p < 0.001) compared to high-calorie diet group. The mean VEGF of high-calorie diet group combined with MICT was significantly higher (p = 0.025) compared to standard and high-calorie diet group, and high-calorie diet group combined with MIIT was significantly higher (p = 0.004) compared to high-calorie diet group. It can be concluded that both moderate-intensity continuous and interval training significantly increased VEGF and reduced cholesterol levels.

Key Words: obesity, interval training, continuous training, cholesterol, VEGF.

 

Author Biographies

Fauqi Amalia , Universitas Airlangga, Indonesia

Master Program of Basic Medicine Science, Faculty of Medicine, Universitas Airlangga, Indonesia

Lina Lukitasari , Universitas Airlangga, Indonesia

Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Indonesia

Zulhabri Othman , Management and Science University

Postgraɗuate Centre, Management and Science University

Lilik Herawati , Universitas Airlangga, Indonesia

Physiology Department, Faculty of Medicine, Universitas Airlangga

  Sport Health Science Program, Faculty of Medicine, Universitas Airlangga

Ahmad Riyono , Universitas Airlangga, Indonesia

Physiotherapy Program, Faculty of Vocational Study, Universitas Airlangga

References

Akiyama, T., Tachibana, I., Shirohara, H., Watanabe, N., & Otsuki, M. (1996). High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Research and Clinical Practice, 31(1–3), 27–35. https://doi.org/10.1016/0168-8227(96)01205-3

Conraads, V. M., Pattyn, N., De Maeyer, C., Beckers, P. J., Coeckelberghs, E., Cornelissen, V. A., Denollet, J., Frederix, G., Goetschalckx, K., Hoymans, V. Y., Possemiers, N., Schepers, D., Shivalkar, B., Voigt, J. U., Van Craenenbroeck, E. M., & Vanhees, L. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. International Journal of Cardiology, 179, 203–210. https://doi.org/10.1016/j.ijcard.2014.10.155

Costa, R. R., Barroso, B. M., Reichert, T., Vieira, A. F., & Kruel, L. F. M. (2020). Effects of supervised exercise training on lipid profile of children and adolescents: Systematic review, meta-analysis and meta-regression. Science and Sports, 35(6), 321–329. https://doi.org/10.1016/j.scispo.2020.02.007

Coswig, V. S., Barbalho, M., Raiol, R., Del Vecchio, F. B., Ramirez-Campillo, R., & Gentil, P. (2020). Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. Journal of Translational Medicine, 18(1), 1–11. https://doi.org/10.1186/s12967-020-02261-8

Dimkpa, U., & Ugwu, A. C. (2010). Post-exercise systolic blood pressure recovery and adiposity in adults. Comparative Exercise Physiology, 7(2), 89–96. https://doi.org/10.1017/S1755254010000267

dos Santos, L. L., de Castro, J. B. P., Linhares, D. G., dos Santos, A. O. B., de Souza Cordeiro, L., Borba-Pinheiro, C. J., & de Souza Vale, R. G. (2023). Effects of physical exercise on hepatic biomarkers in adult individuals: A systematic review and meta-analysis. Retos, 49, 762–774. https://doi.org/10.47197/RETOS.V49.98939

Erekat, N. S., AL-Jarrah, M. D., & Al Khatib, A. J. (2014). Upregulation of Vascular Endothelial Growth Factor expression in the kidney could be reversed following treadmill exercise training in type I diabetic rats. World Journal of Nephrology and Urology, 5(1), 23–29. https://doi.org/10.14740/wjnu153e

Fisher, G., Brown, A. W., Bohan Brown, M. M., Alcorn, A., Noles, C., Winwood, L., Resuehr, H., George, B., Jeansonne, M. M., & Allison, D. B. (2015). High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: A randomized controlled trial. PLoS ONE, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0138853

Foss, M. L., Keteyian, S. J., & Fox, E. L. (1998). Fox’s Physiological Basis for Exercise and Sport (6th ed.). William C Brown Pub.

Franco Gallegos, L. I., Robles Hernández, G. S. I., Montes Mata, K. J., & Aguirre Chávez, J. F. (2024). Beyond glycemic control: benefits of physical activity on the quality of life of people with type 2 diabetes mellitus: a narrative review. Retos, 53, 262–270. https://doi.org/10.47197/RETOS.V53.101811

Herawati, L., Sari, G. M., & Irawan, R. (2020). High glycemic index diet decreases insulin secretion without altering Akt and Pdx1 expression on pancreatic beta cells in mice. Chiang Mai University Journal of Natural Sciences, 19(3), 366–378. https://doi.org/10.12982/CMUJNS.2020.0024

Ishikawa-Takata, K., Ohta, T., Moritaki, K., Gotou, T., & Inoue, S. (2002). Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. European Journal of Clinical Nutrition, 56(7), 601–607. https://doi.org/10.1038/sj.ejcn.1601364

Lee, C.-S., Lee, S.-H., Sung, G.-D., & Baek, Y.-H. (2010). The effect of 4 weeks of treadmill exercise and protein diet on immunoglobulin and antioxidant enzyme in rats. Journal of Life Science, 20(10), 1483–1489. https://doi.org/10.5352/jls.2010.20.10.1483

Lilik, H. (2004). The decreases of postprandial blood glucose levels in interval and continuous moderate physical exercises. Thesis. Program Pasca Sarjana. Universitas Airlangga.

Liu, J., Zhu, L., & Su, Y. (2020). Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Frontiers in Physiology, 11(April), 1–18. https://doi.org/10.3389/fphys.2020.00214

Lutfi, A. R., Herawati, L., & Sari, G. M. (2021). Calorie restriction and moderate intensity continuous exercise decrease Free Fatty Acid levels and visceral fat weight on high calorie diet female mice. Indian Journal of Forensic Medicine & Toxicology, 15(2), 3665–3677. https://doi.org/10.37506/ijfmt.v15i2.14944

Mann, S., Beedie, C., & Jimenez, A. (2014). Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Medicine, 44(2), 211–221. https://doi.org/10.1007/s40279-013-0110-5

Mohammadi, V. G. M., & Chodari, H. D. L. (2016). Effects of crocin and voluntary exercise, alone or combined, on heart VEGF‑A and HOMA‑IR of HFD/STZ induced type 2 diabetic rats. Journal of Endocrinological Investigation, 39(10), 1179–1186. https://doi.org/10.1007/s40618-016-0456-2

Murray, R. K., Graner, D. K., & Rodwell, V. W. (2006). Biokimia Harper (Edisi 27). EGC.

Oemiati, R., & Rustika, R. (2014). Penyakit Jantung Koroner [PJK] dengan obesitas di kelurahan Kebon Kelapa, Bogor [Baseline studi kohort faktor risiko PTM] (Coronary Heart Disease [CHD] with obesity in Kebon Kalapa Village, Bogor [Baseline cohort study of non-communicable diseases risk factor]). Buletin Penelitian Sistem Kesehatan, 17(4), 385–393. https://media.neliti.com/media/publications/20918-ID-coronary-heart-disease-chd-with-obesity-in-kebon-kalapa-village-bogor-baseline-c.pdf

Ogasawara, J., Izawa, T., Sakurai, T., Sakurai, T., Shirato, K., Ishibashi, Y., Ishida, H., Ohno, H., & Kizaki, T. (2015). The molecular mechanism underlying continuous exercise training-induced adaptive changes of lipolysis in white adipose cells. Journal of Obesity, 2015. https://doi.org/10.1155/2015/473430

Poole, D. C., Copp, S. W., Colburn, T. D., Craig, J. C., Allen, D. L., Sturek, M., O’Leary, D. S., Zucker, I. H., & Musch, T. I. (2020). Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology-Heart and Circulatory Physiology, 318(5), H1100–H1138. https://doi.org/10.1152/ajpheart.00697.2019

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Ihsan, M., Herawati, L., Rahmanto, I., & Halim, S. (2024). Aerobic exercise increases release of Growth Hormone in the blood circulation in obese women. Retos, 51, 726–731. https://doi.org/10.47197/retos.v51.99944

Pulido, R. O., & Ramírez Ortega, M. L. (2020). Physical activity, cognition, and academic performance: a brief review from the neurosciences. Retos, 2041(38), 868–878. https://doi.org/10.47197/retos.v38i38.72378

Putri, E. A. C., Argarini, R., Purwanto, B., & Herawati, L. (2018). Intermittent physical training decreases peak of blood glucose level after meals in rats. In: Proceedings of Surabaya International Physiology Seminar (SIPS 2017), pp 76-79

Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Medicine, 45(5), 679–692. https://doi.org/10.1007/s40279-015-0321-z

Regina de Sousa, T., Gabriel da Silva Alexandrino, W., Souza, A., Faúndez-Casanova, C., Jane dos Santos Pascoini, M., Andréia Mochi Awada, M., de Paula, R., Merchan Ferraz Grizzo, F., Oltramari, K., Westphal-Nardo, G., & Nardo Junior, N. (2024). Effects of physical activity in adults with severe obesity: a systematic review. Retos, 53(424), 671–680. https://recyt.fecyt.es/index.php/retos/index

Riyono, A., Tinduh, D., Othman, Z., & Herawati, L. (2022). Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. Comparative Exercise Physiology, 18(5), 403-411. https://doi.org/10.3920/CEP220013

Roohbakhsh, E., Barari, A., & Abbaszadeh, H. (2021). The effect of interval training consuming fenugreek seed extract on FGF-21 and VEGF gene expression in patient with coronary artery disease. Quarterly of The Horizon of Medical Science, 27(2), 130–147. https://doi.org/http://dx.doi.org/10.32598/hms.27.2.3456.1

Sabzevari Rad, R., Shirvani, H., Mahmoodzadeh Hosseini, H., Shamsoddini, A., & Samadi, M. (2020). Micro RNA-126 promoting angiogenesis in diabetic heart by VEGF/Spred-1/Raf-1 pathway: effects of high-intensity interval training. Journal of Diabetes and Metabolic Disorders, 19(2), 1089–1096. https://doi.org/10.1007/s40200-020-00610-4

Sanhueza-Morales, V., Hermosilla-Palma, F., Reyes-Amigo, T., & Gómez-Álvarez, N. (2024). Effect of physical exercise on cardiometabolic risk factors in preadolescents and adolescents with severe obesity: a systematic review. Retos, 56, 248–257. https://doi.org/10.47197/retos.v56.103920

Sari, A. R., Risdaryanto, R. D., Pradipta, M. H., Al Qorni, U., Rejeki, P. S., Argarini, R., Halim, S., & Pranoto, A. (2024). Impact of time-resricted feeding and aerobic exercise combination on promotes myokine levels and improve body composition in obese women. Retos, 53, 1–10. https://doi.org/10.47197/retos.v53.102429

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The effect of exercise intensity on anthropometric parameters and renal damage in high fructose-induced mice. Retos, 51(2022), 1194–1209. https://doi.org/10.47197/RETOS.V51.101189

Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose inflammation, insulin resistance, and cardiovascular disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251

Su, L. Q., Fu, J. M., Sun, S. L., Zhao, G. G., Cheng, W., Dou, C. C., & Quan, M. H. (2019). Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PLoS ONE, 14(1), 1–22. https://doi.org/10.1371/journal.pone.0210644

Sylviana, N., Goenawan, H., Susanti, Y., Lesmana, R., Megantara, I., & Setiawan. (2022). Effect of different intensities aerobic exercise to cardiac angiogenesis regulation on Wistar rats. Polish Journal of Veterinary Sciences, 25(1), 119–128. https://doi.org/10.24425/pjvs.2022.140848

Woods, A. D. (2010). Cholesterol levels. Nursing, 40(8), 31. https://doi.org/10.1097/01.NURSE.0000383897.65472.6b

Wu, C., Lin, F., Qiu, S., & Jiang, Z. (2014). The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention. PLoS ONE, 9(6), 1–8. https://doi.org/10.1371/journal.pone.0099155

Yazdani, F., Shahidi, F., & Karimi, P. (2020). The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. Journal of Physiology and Biochemistry, 76(2), 291–299. https://doi.org/10.1007/s13105-020-00733-5

Published

2024-07-26

How to Cite

Amalia, F. ., Meinar Sari, G. ., Lukitasari, L. ., Othman, Z. ., Herawati, L. ., & Riyono, A. . (2024). Moderate intensity continuous and interval training increased VEGF and decreased cholesterol levels in female rats high calorie diet. Retos, 59, 130–137. https://doi.org/10.47197/retos.v59.107004

Issue

Section

Original Research Article

Most read articles by the same author(s)

<< < 1 2