La máxima carga en flywheel para evaluar el rendimiento: validación y reproducibilidad en la sentadilla

Autores/as

DOI:

https://doi.org/10.47197/retos.v62.106921

Palabras clave:

programación, fuerza, sobrecarga excéntrica, perfil fuerza-velocidad, nivel de fuerza

Resumen

Este trabajo analizó el concepto de la máxima carga en flywheel (MLF) como un valor de máximo rendimiento dinámico en el ejercicio de media sentadilla en flywheel. Veinte personas físicamente activas participaron en este estudio. La carga de MLF fue calculada utilizando la relación exponencial de la aceleración-momento media de inercia angular concéntrica en el punto en el que la primera derivada era inferior a 1 unidad. La validez fue analizada estudiando la asociación entre el MLF y el rendimiento en sprint (velocidad máxima) y el salto (salto con contramovimiento, drop jump, saltos repetidos en 30”, stiffness vertical y el índice reactivo de fuerza). La fiabilidad del test-retest fue analizada después de la cuarta y octava sesión. El MFL mostró una asociación significativa de moderada a muy larga con la velocidad de sprint, altura de salto, el stiffness del drop jump, y el índice reactivo de fuerza. El análisis de test-retest reveló una excelente fiabilidad (coeficiente de correlación intraclase = 0,91) y buena fiabilidad absoluta (coeficiente de variación, tras cuatro (4,2%) y tras ocho (3,9%) sesiones de familiarización).

Citas

Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports medicine (Auckland, N.Z.), 26(4), 217–238.

Beato, M., Fleming, A., Coates, A., & Dello Iacono, A. (2021). Validity and reliability of a flywheel squat test in sport. Journal of Sports Sciences, 39(5), 482–488. https://doi.org/10.1080/02640414.2020.1827530

Beato, M., Maroto-Izquierdo, S., Hernández-Davó, J. L., & Raya-González, J. (2021). Flywheel Training Periodization in Team Sports. Frontiers in Physiology, 12(November), 1–6. https://doi.org/10.3389/fphys.2021.732802

Berg, H. E., & Tesch, P. A. (1994). A gravity-independent ergometer to be used for resistance training in space. Aviation Space and Environmental Medicine, 65(8), 752–756.

Berg, H. E., & Tesch, P. A. (1998). Force and power characteristics of a resistive exercise device for use in space. Acta Astronautica, 42(1), 219–230. https://doi.org/10.1016/S0094-5765(98)00119-2

Caderby, T., & Dalleau, G. (2018). A simple method for measuring lower limb stiffness in hopping. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods. https://doi.org/10.1007/978-3-319-05633-3_6

Carroll, K. M., Wagle, J. P., Sato, K., Taber, C. B., Yoshida, N., Bingham, G. E., & Stone, M. H. (2019). Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomechanics, 18(4), 390–401. https://doi.org/10.1080/14763141.2018.1433715

Çetin, O., Akyildiz, Z., Demirtaş, B., Sungur, Y., Clemente, F. M., Cazan, F., & Ardigò, L. P. (2022). Reliability and validity of the multi-point method and the 2-point method’s variations of estimating the one-repetition maximum for deadlift and back squat exercises. PeerJ, 10. https://doi.org/10.7717/peerj.13013

Cormack, S. J., Newton, R. U., McGulgan, M. R., & Doyle, T. L. A. (2008). Reliability of measures obtained during single and repeated countermovement jumps. International journal of sports physiology and performance, 3(2), 131–144. https://doi.org/10.1123/IJSPP.3.2.131

de Hoyo, M., Sañudo, B., Carrasco, L., Domínguez-Cobo, S., Mateo-Cortes, J., Cadenas-Sánchez, M. M., & Nimphius, S. (2015). Effects of traditional versus horizontal inertial flywheel power training on common sport-related tasks. Journal of human kinetics, 47(1), 155-167. https://doi.org/10.1515/hukin-2015-0071.

de Keijzer, K. L., Gonzalez, J. R., & Beato, M. (2022). The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. In PLoS ONE (Bd. 17, Nummer 2 February). Public Library of Science. https://doi.org/10.1371/journal.pone.0264375

Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: a Systematic Review. In Sports Medicine - Open (Bd. 6, Nummer 1). Springer. https://doi.org/10.1186/s40798-020-00260-z

Hopkins, W. G. (2015). Spreadsheets for Analysis of Validity and Reliability. Sportscience, 39, 16–42.

Kasper, K. (2019). Sports Training Principles. Current Sports Medicine Reports, 18(4), 95–96. https://doi.org/10.1249/JSR.0000000000000576

Kawamori N, H. G. (2004). The optimal training load for the development of muscular power. J Strength Cond Res, 18(3), 675-84. https://doi.org/10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2.

Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exercise Prescription. Medicine and Science in Sports and Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61

Kraemer, W. J., Ratamess, N. A., Flanagan, S. D., Shurley, J. P., Todd, J. S., & Todd, T. C. (2017). Understanding the Science of Resistance Training: An Evolutionary Perspective. Sports Medicine, 47(12), 2415–2435. https://doi.org/10.1007/s40279-017-0779-y

Loturco, I., Suchomel, T., Bishop, C., Kobal, R., Pereira, L. A., & McGuigan, M. (2019). One-repetition-maximum measures or maximum bar-power output: Which is more related to sport performance? International Journal of Sports Physiology and Performance, 14(1), 33–37. https://doi.org/10.1123/ijspp.2018-0255

Maloney, S. J., Richards, J., Jelly, L., & Fletcher, I. M. (2019). Unilateral stiffness interventions augment vertical stiffness and change of direction speed. Journal of Strength and Conditioning Research, 33(2), 372–379. https://doi.org/10.1519/JSC.0000000000002006

Maroto-Izquierdo, S., Bautista, I., & Rivera, F. (2020). Post-activation performance enhancement (PAPE) after a single-bout of high-intensity flywheel resistance training. Biology of Sport, 343–350. https://doi.org/10.5114/biolsport.2020.96318

Martinez-Aranda, L. M. M., & Fernandez-Gonzalo, R. (2017). Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. Journal of Strength and Conditioning Research, 31(6), 1653–1661. https://doi.org/10.1519/JSC.0000000000001635

McErlain-Naylor, S. A., & Beato, M. (2021). Concentric and eccentric inertia–velocity and inertia–power relationships in the flywheel squat. Journal of Sports Sciences, 39(10), 1136–1143. https://doi.org/10.1080/02640414.2020.1860472.

Maloney, S. J., Richards, J., Jelly, L., & Fletcher, I. M. (2019). Unilateral stiffness interventions augment vertical stiffness and change of direction speed. Journal of Strength and Conditioning Research, 33(2), 372-379. https://doi.org/10.1519/JSC.0000000000002006.

Muñoz-López, A., Floria, P., Sañudo, B., Pecci, J., Carmona, J., & Pozzo, M. (2021). The Maximum Flywheel Load : A Novel Index to Monitor Loading Intensity of Flywheel Devices. Sensors, 23, 8124–16. https://doi.org/10.3390/s21238124

Muñoz-López, A., Fonseca, F., Ramirez-Campillo, R., Gantois, P., Nuñez, F. J., & Nakamura, F. Y. (2021). The use of real-time monitoring during flywheel resistance training programs: how can we measure the eccentric overload? A systematic review and meta-analysis. Biology of Sport, 639–652.

Muñoz-López, A., Galiano, C., Nuñez, F. J., & Floría, P. (2022). The flywheel device shaft shape determines force and velocity profiles in the half squat exercise. Journal of Human Kinetics, 81(January), 15–25. https://doi.org/10.2478/hukin-2022-0002

Muñoz-López, A., Pozzo, M., & Floria, P. (2021). Real-time mechanical responses to overload and fatigue using a flywheel training device. Journal of Biomechanics, 121, 110429. https://doi.org/10.1016/j.jbiomech.2021.110429

Nuñez, F. J., De Hoyo, M., López, A. M., Sañudo, B., Otero-Esquina, C., Sanchez, H., & Gonzalo-Skok, O. (2019). Eccentric-concentric ratio: a key factor for defining strength training in soccer. International Journal of Sports Medicine, 40(12), 796-802. https://doi.org/10.1055/a-0977-5478.

Pecci Barea, F. J., Muñoz López, A., Jones, P. A., & Sañudo Corrales, F. D. B. (2023). Effects of 6 weeks in-season flywheel squat resistance training on strength, vertical jump, change of direction and sprint performance in professional female soccer players. Biology of Sport, 40 (2), 521-529. https://doi.org/10.5114/biolsport.2023.118022.

Peng, H. T., Kernozek, T. W., & Song, C. Y. (2011). Quadricep and hamstring activation during drop jumps with changes in drop height. Physical Therapy in Sport, 12(3), 127-132. https://doi.org/10.1016/j.ptsp.2010.10.001

Raya-González, J., Prat-Luri, A., López-Valenciano, A., Sabido, R., & Hernández-Davó, J. L. (2021). Effects of Flywheel Resistance Training on Sport Actions. A Systematic Review and Meta-Analysis. Journal of Human Kinetics, 77(1), 191–204. https://doi.org/10.2478/hukin-2021-0020

Sabido, R., Hernández-Davó, J. L., & Pereyra-Gerber, G. T. (2018). Influence of different inertial loads on basic training variables during the flywheel squat exercise. International Journal of Sports Physiology and Performance, 13(4), 482–489. https://doi.org/10.1123/ijspp.2017-0282

Sagelv, E. H., Pedersen, S., Nilsen, L. P. R., Casolo, A., Welde, B., Randers, M. B., & Pettersen, S. A. (2020). Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 12, 1-13. https://doi.org/10.1186/s13102-020-00210.

Samozino, P. (2018). A simple method for measuring force, velocity and power capabilities and mechanical effectiveness during sprint running. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods. https://doi.org/10.1007/978-3-319-05633-3_11

Samozino, P., Rejc, E., di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force-velocity profile in ballistic movements-Altius: Citius or Fortius? Medicine and Science in Sports and Exercise, 44(2), 313–322. https://doi.org/10.1249/MSS.0b013e31822d757a

Sánchez-Sixto, A., McMahon, J. J., & Floría, P. (2021). Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sports Biomechanics. https://doi.org/10.1080/14763141.2020.1836252

Schoenfeld, B. J., Grgic, J., Every, D. W. van, & Plotkin, D. L. (2021). Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum.

Tous-Fajardo, J., Maldonado, R. A., Quintana, J. M., Pozzo, M., & Tesch, P. A. (2006). The flywheel leg-curl machine: offering eccentric overload for hamstring development. International Journal of Sports Physiology and Performance, 1(3), 293–298. https://doi.org/10.1123/ijspp.1.3.293

van Hooren, B., & Zolotarjova, J. (2017). The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. In Journal of Strength and Conditioning Research (Bd. 31, Nummer 7, S. 2011–2020). https://doi.org/10.1519/JSC.0000000000001913

Wisløff, U., Castagna, C., Helgerud, J., Jones, R., & Hoff, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British Journal of Sports Medicine, 38(3), 285–288. https://doi.org/10.1136/bjsm.2002.002071

Descargas

Publicado

2024-11-20

Cómo citar

Muñoz-López, A., Marmol, D., Sanchez-Sixto, A., Pozzo, M., & Floría, P. (2024). La máxima carga en flywheel para evaluar el rendimiento: validación y reproducibilidad en la sentadilla. Retos, 62, 910–917. https://doi.org/10.47197/retos.v62.106921

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a