Diseño de una herramienta de medición para la coordinación ojo-mano basada en tecnología de sen-sores: validez y confiabilidad (Design of a sensor technology-based hand-eye coordination measuring tool: Validity and reliability)

Autores/as

  • Roma Irawan Universitas Negeri Padang
  • Ronni Yenes Universitas Negeri Padang
  • Deby Tri Mario Universitas Negeri Padang
  • Anton Komaini Universitas Negeri Padang
  • Jerónimo García-Fernández Universidad de Sevilla https://orcid.org/0000-0001-6574-9758
  • Bekir Erhan Orhan Istanbul Aydın University https://orcid.org/0000-0002-3149-6630
  • Novadri Ayubi Universitas Negeri Surabaya

DOI:

https://doi.org/10.47197/retos.v56.103610

Palabras clave:

tecnología deportiva, sensores, hand-eye coordination, sports performance

Resumen

Esta investigación tiene como objetivo diseñar una herramienta de medición de la coordinación ojo-mano basada en sensores y probar su validez y confiabilidad. Para evaluar su viabilidad participaron un total de 9 expertos, cada uno de ellos 3 expertos en mediciones deportivas, 3 expertos en motricidad y 3 expertos en tecnología. Mientras, 50 estudiantes de una de las Facultades de Ciencias del Deporte de Indonesia participaron en pruebas de campo. Los participantes fueron estudiantes de cursos de condición física (de 18 a 20 años), compuestos por hombres (n1=30) y mujeres (n2 = 20). Se preparó un cuestionario de validación y se discutió con expertos como guía para proporcionar una evaluación de la relevancia del instrumento (idoneidad, precisión, facilidad y practicidad de la herramienta) y la confiabilidad test-retest para las pruebas de campo realizadas dos veces con la diferencia. entre la primera y la segunda prueba hay una semana. Los datos se analizaron utilizando el índice V de Aiken, el coeficiente de correlación intraclase (ICC) y la correlación de Pearson. Los resultados de la investigación mostraron que la evaluación de todos los aspectos del instrumento de medición estuvo en la categoría alta, y el valor ICC tampoco mostró diferencias entre evaluaciones (P>0.05). Luego, los resultados de las pruebas de confiabilidad test-retest obtuvieron un análisis de regresión significativo con un alto coeficiente de correlación (r=0.801; P<0.05). En conclusión, esta herramienta de medición se puede utilizar en la recopilación de datos para mejorar el rendimiento en deportes que implican coordinación ojo-mano (como voleibol, bádminton, tenis, baloncesto, hockey, artes marciales y otros deportes que utilizan predominantemente las manos), tanto para Entrenadores, atletas y practicantes de deporte.

Palabras Clave: validez, confiabilidad, coordinación, sensors

Abstract. This research aims to design a sensor-based hand-eye coordination measuring tool and test its validity and reliability. A total of 9 experts were involved in assessing its feasibility, each of them 3 sports measurement experts, 3 motor experts, and 3 technology experts. Meanwhile, 50 students at one of the Faculty of Sports Sciences, Indonesia participated in field trials. Participants were students taking physical condition courses (aged 18-20 years), consisting of male (n1=30) and female (n2=20). A validation questionnaire was prepared and discussed with experts as a guide in providing an assessment of the relevance of the instrument (suitability, accuracy, ease, and practicality of the tool), and test-retest reliability for field trials carried out twice with the difference between the first and second tests being one week. Data were analyzed using Aiken's V Index, Intraclass Correlation Coefficient (ICC), and Pearson correlation. The research results showed that the assessment of all aspects of the measuring instrument was in the high category, and the ICC value also showed no differences between assessments (P>0.05). Then, the test-retest reliability testing results obtained a significant regression analysis with a high correlation coefficient (r=0.801; P<0.05). In conclusion, this measuring tool can collect data to improve performance in sports involving hand-eye coordination (such as volleyball, badminton, tennis, basketball, hockey, martial arts and other sports that predominantly use the hands), both for coaches, athletes and sports practitioners.

Keywords: validity, reliability, coordination, sensors

Citas

Adesida, Y., Papi, E., & Mcgregor, A. H. (2019). Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors, 19(7), 1597. https://doi.org/10.3390/s19071597

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131–142.

Almanasreh, E., Moles, R., & Chen, T. F. (2019). Evaluation of methods used for estimating content validity. Research in Social and Administrative Pharmacy, 15(2), 214–221. https://doi.org/10.1016/j.sapharm.2018.03.066

Alnedral, A., Ihsan, N., Mario, D. T., Aldani, N., & Sari, D. P. (2023). Digital-based e-modules in Tarung Derajat martial arts learning at basic level. International Journal of Human Movement and Sports Sciences, 11(2), 306–315. https://doi.org/10.13189/saj.2023.110207

Antara, R., Welis, W., Masrun, M., Irawan, R., Mario, D. T., Alnedral, … Wąsik, J. (2023). Effects of agility, coordination, and flexibility on dribbling skills in senior high school female field hockey players. Physical Activity Review, 11(2), 42–51. https://doi.org/10.16926/par.2023.11.20

Ashok, C. (2008). Test your physical fitness. Gyan Publishing House.

Benson, L. C., Tait, T. J., Befus, K., Choi, J., Hillson, C., Stilling, C., … Emery, C. A. (2020). Validation of a commercially available inertial measurement unit for recording jump load in youth basketball players. Journal of Sports Sciences, 38, 928–936. https://doi.org/10.1080/02640414.2020.1737360

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors, 18(3), 1–50. https://doi.org/10.3390/s18030873

Ceylan, H. I., & Saygin, O. (2015). Examining the effects of proprioceptive training on coincidence anticipation timing, reaction time and hand-eye coordination. Anthropologist, 20(3), 437–445. https://doi.org/10.1080/09720073.2015.11891747

Chang, Y. K., Tsai, Y. J., Chen, T. T., & Hung, T. M. (2013). The impacts of coordinative exercise on executive function in kindergarten children: An ERP study. Experimental Brain Research, 225(2), 187–196. https://doi.org/10.1007/s00221-012-3360-9

Davis, J. J., & Gruber, A. H. (2019). Quantifying exposure to running for meaningful insights into running- related injuries. BMJ Open Sport Exercise Medicine, 5, 1–4. https://doi.org/10.1136/bmjsem-2019-000613

Eitzen, I., Renberg, J., & Færevik, H. (2021). The use of wearable sensor technology to detect shock impacts in sports and occupational settings: A scoping review. Sensors, 21(1), 1–29. https://doi.org/10.3390/s21154962

Ellison, P. H., Kearney, P. E., Sparks, S. A., Murphy, P. N., & Marchant, D. C. (2018). Further evidence against eye–hand coordination as a general ability. International Journal of Sports Science and Coaching, 13(5), 687–693. https://doi.org/10.1177/1747954117747132

Ellison, P. H., Sparks, S. A., Murphy, P. N., Carnegie, E., & Marchant, D. C. (2014). Determining eye–hand coordination using the sport vision trainer: An evaluation of test–retest reliability. Research in Sports Medicine, 22(1), 36–48. https://doi.org/10.1080/15438627.2013.852090

Ferreira, J. J., Fernandes, C., Ratten, V., & Miragaia, D. (2020). Sports innovation: A bibliometric study. Sport Entrepreneurship and Public Policy: Building a New Approach to Policy-Making for Sport, 153–170. https://doi.org/10.1007/978-3-030-29458-8_10

Firdaus, K., Hartoto, S., Hariyanto, A., Subagya, I., Nikmatullaili, Mario, D. T., & Zulbahri. (2023). Evaluation of several factors that affect the learning outcomes of Physical Education. International Journal of Human Movement and Sports Sciences, 11(1), 27–36. https://doi.org/10.13189/saj.2023.110104

Firdaus, K., & Mario, D. T. (2022). Development of service sensor tools on table tennis net. Journal of Physical Education and Sport, 22(6), 1449–1456. https://doi.org/10.7752/jpes.2022.06182

Firdausi, D. K. A., Andriadi, A., Dwisaputra, I., & Simbolon, M. E. M. (2023). Tablero automático de pase de pecho para evaluar las habilidades básicas de pase de pecho usando un sensor de vibración (Chest pass automatic board for evaluating basic chest pass skills using vibration sensor). Retos, 50, 931–935. https://doi.org/10.47197/retos.v50.94808

Handayani, S. G., Myori, D. E., Yulifri, Komaini, A., & Mario, D. T. (2023). Android-based gymnastics learning media to improve handstand skills in junior high school students. Journal of Human Sport and Exercise, 18(3), 690–700. https://doi.org/10.14198/jhse.2023.183.15

Heale, R., & Twycross, A. (2015). Validity and reliability in quantitative studies. Evidence-Based Nursing, 18(3), 66–67. https://doi.org/10.1136/eb-2015-102129

Heishman, A., Peak, K., Miller, R., Brown, B., Daub, B., Freitas, E., & Bemben, M. (2020). Associations between two athlete monitoring systems used to quantify external training loads in basketball players. Sports, 8(3), 1–11. https://doi.org/10.3390/sports8030033

Kim, D., & Ko, Y. J. (2019). The impact of Virtual Reality (VR) technology on sport spectators’ flow experience and satisfaction. Computers in Human Behavior, 93, 346–356. https://doi.org/10.1016/j.chb.2018.12.040

Kokarev, B., Kokareva, S., Atamanuk, S., Terehina, O., & Putrov, S. (2023). Effectiveness of innovative methods in improving the special physical fitness of qualified athletes in aerobic gymnastics. Journal of Physical Education and Sport, 23(3), 622–630. https://doi.org/10.7752/jpes.2023.03077

Koo, T. K., & Li, M. Y. (2016). A Guideline of selecting and reporting Intraclass Correlation Coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Laby, D. M., Kirschen, D. G., Govindarajulu, U., & Deland, P. (2018). The hand-eye coordination of professional baseball players: The relationship to batting. Optometry and Vision Science, 95(7), 557–567. https://doi.org/10.1097/OPX.0000000000001239

Larsson, H., Tegern, M., Monnier, A., Skoglund, J., Helander, C., Persson, E., … Aasa, U. (2015). Content validity index and intra- and inter- rater reliability of a new muscle strength/endurance test battery for Swedish soldiers. PLoS ONE, 10(7), 1–13. https://doi.org/10.1371/journal.pone.0132185

Laurent, E., Ward, P., Williams, A. M., & Ripoll, H. (2006). Expertise in basketball modifies perceptual discrimination abilities, underlying cognitive processes, and visual behaviours. Visual Cognition, 13(2), 247–271. https://doi.org/10.1080/13506280544000020

Lexell, J. E., & Downham, D. Y. (2005). How to assess the reliability of measurements in rehabilitation. American Journal of Physical Medicine & Rehabilitation, 84(9), 719–723. https://doi.org/10.1097/01.phm.0000176452.17771.20

Lisenchuk, G., Leleka, V., Bogatyrev, K., Kokareva, S., Adamenko, O., Shchekotylina, N., … Krupenya, S. (2023). Fitness training in functional preparedness of highly qualified football players. Journal of Physical Education and Sport, 23(2), 502–509. https://doi.org/10.7752/jpes.2023.02062

Lobier, M., Dubois, M., & Valdois, S. (2013). The role of visual processing speed in reading speed development. PLoS ONE, 8(4), e58097. https://doi.org/10.1371/journal.pone.0058097

Masci, I., Vannozzi, G., Bergamini, E., Pesce, C., Getchell, N., & Cappozzo, A. (2013). Assessing locomotor skills development in childhood using wearable inertial sensor devices: the running paradigm. Gait & Posture, 37(4), 570–574. https://doi.org/10.1016/j.gaitpost.2012.09.017

Mcfadden, B. A., Walker, A. J., Bozzini, B. N., Sanders, D. J., & Arent, S. M. (2020). Comparison of internal and external training loads in male and female collegiate soccer players during practices vs. games. Journal of Strength and Conditioning Research, 34(4), 969–974. https://doi.org/10.1519/jsc.0000000000003485

Millard, L., Shaw, I., Breukelman, G. J., & Shaw, B. S. (2021). Differences in visio-spatial expertise between 1st division rugby players and non-athletes. Heliyon, 7(2), e06290. https://doi.org/10.1016/j.heliyon.2021.e06290

Nagano, T., Kato, T., & Fukuda, T. (2004). Visual search strategies of soccer players in one-on-one defensive situations on the field. Perceptual & Motor Skills, 99(3), 968–974.

Napier, C., Ryan, M., Menon, C., & Paquette, M. R. (2020). Session rating of perceived exertion combined with training volume for estimating training responses in runners. Journal of Athletic Training, 55(12), 1285–1291. https://doi.org/10.4085/1062-6050-573-19

Oh, H., Johnson, W., & Syrop, I. P. (2019). Winter adaptive sports participation, injuries, and equipment. Sports Medicine and Arthroscopy Review, 27(2), 56–59. https://doi.org/10.1097/JSA.0000000000000236

Paul, M., Biswas, S. K., & Singh, S. J. (2011). Role of sports vision and eye hand corrdination traning in performance of table tennis players. Brazilian Journal of Biomotricity, 5(2), 106–116.

Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Focus on research methods: Is the CVI an acceptable indicator of content validity ? Appraisal and recommendations. Research in Nursing & Health, 30(4), 459–467. https://doi.org/10.1002/nur.20199

Quotronics, L. (2011). Batak pro manual. Surrey, United Kingdom.

Rana, M., & Mittal, V. (2020). Wearable sensors for real-time kinematics analysis in sports : A review. IEEE Sensors Journal, 21(2), 1187–1207. https://doi.org/10.1109/JSEN.2020.3019016

Ratten, V. (2020). Sport technology: A commentary. The Journal of High Technology Management Research, 31(1), 1–6. https://doi.org/10.1016/j.hitech.2020.100383

Rico-González, M., Arcos, A. L., Rojas-Valverde, D., Clemente, F. M., & Pino-Ortega, J. (2020). A survey to assess the quality of the data obtained by radio-frequency technologies and microelectromechanical systems to measure external workload and collective behavior variables in team sports. Sensors, 20(8), 1–16. https://doi.org/10.3390/s20082271

Rifki, M. S., Hanifah, R., Sepdanius, E., Komaini, A., Ilham, Fajri, H. P., & Mario, D. T. (2022). Development of a volleyball test instrument model. International Journal of Human Movement and Sports Sciences, 10(4), 807–814. https://doi.org/10.13189/saj.2022.100421

Rozan, M. R., Sidik, M. K. M., Sunar, M. S., & Omar, A. H. (2015). KIHECT©: Reliability of hand-eye coordination among rugby players using consumer depth camera. In Computational Intelligence in Information Systems: Proceedings of the Fourth INNS Symposia Series on Computational Intelligence in Information Systems, 201–210. https://doi.org/10.1007/978-3-319-13153-5_20

Rubio, D. M., Berg-weger, M., Tebb, S. S., Lee, E. S., & Rauch, S. (2003). Objectifying content validity: Conducting a content validity study in social work research. Social Work Research, 27(2), 94–104.

Ryan, M. R., Napier, C., Greenwood, D., & Paquette, M. R. (2020). Comparison of different measures to monitor week-to-week changes in training load in high school runners. International Journal of Sports Science & Coaching, 16, 370–379. https://doi.org/10.1177/1747954120970305

Schwab, S., & Memmert, D. (2012). The impact of a sports vision training program in youth field hockey players. Journal of Sports Science & Medicine, 11(4), 624.

Sireci, S. G., & Faulkner-Bond, M. (2014). Validity evidence based on test content. Psicothema.

Sonar, A. D., Sawant, N., Salunkhe, J., & Baraskar, S. S. (2022). Design, development, and validation of hand-eye coordination equipment. IETE Journal of Research, 1–9. https://doi.org/10.1080/03772063.2022.2055659

Stetter, B. J., Ringhof, S., Krafft, F. C., Sell, S., & Stein, T. (2019). Estimation of knee joint forces in sport movements using wearable sensors and machine learning bernd. Sensors, 19(17), 1–12. https://doi.org/10.3390/s19173690

Susiono, R., Sugiyanto, F., Lumintuarso, R., Tomoliyus, T., Sukamti, E. R., Fauzi, F., … Prabowo, T. A. (2024). Y Innovación en pruebas de agilidad en deportistas especiales de bádminton para la categoría junior (U17): validez y confiabilidad (Y agility test innovation on special badminton athletes for the junior category (U17): Validity and reliability). Retos, 53, 547–553. https://doi.org/10.47197/retos.v53.103282

Szymanski, M., Wolfe, R. A., Danis, W., Lee, F., & Uy, M. A. (2020). Sport and international management : Exploring research synergy. Thunderbird International Business Review, 63(2), 253–266. https://doi.org/10.1002/tie.22139

Umar, U., Alnedral, A., Ihsan, N., Mario, D. T., & Mardesia, P. (2023). The effect of learning methods and motor skills on the learning outcomes of basic techniques in volleyball. Journal of Physical Education and Sport, 23(9), 2453–2460. https://doi.org/10.7752/jpes.2023.09282

Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenertors as new energy technology and self-powered sensors. Energy and Environmental Science, 8(8), 2250–2282. https://doi.org/10.1039/c5ee01532d

Welis, W., Yendrizal, Darni, & Mario, D. T. (2023). Physical fitness of students in Indonesian during the COVID-19 period: Physical activity, body mass index, and socioeconomic status. Physical Activity Review, 11(1), 77–87. https://doi.org/10.16926/par.2023.11.10

Yaakop, N., Koh, D., & Yasin, M. (2023). Una validación del contenido de las discusiones de grupos focales basada en el análisis de necesidades en un módulo de formación en educación física para profesores de escuela primaria (A content validation of focus group discussions based on need analysis in a physical education training module for primary school teachers). Retos, 50, 1115–1122. https://doi.org/10.47197/retos.v50.100191

Zupan, M., & Wile, A. (2011). Eyes on the prize. Training and Conditioning, 21(2), 11–15.

Descargas

Publicado

2024-06-01

Cómo citar

Irawan, R., Yenes, R., Mario, D. T., Komaini, A., García-Fernández, J., Orhan, B. E., & Ayubi, N. (2024). Diseño de una herramienta de medición para la coordinación ojo-mano basada en tecnología de sen-sores: validez y confiabilidad (Design of a sensor technology-based hand-eye coordination measuring tool: Validity and reliability). Retos, 56, 966–973. https://doi.org/10.47197/retos.v56.103610

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 4 > >>