Aplicações da Oxidação Máxima de Gordura e FATmax na avaliação do desempenho esportivo em atletas de endurance: uma revisão narrativa

Autores

  • Martin Molinar Contreras
  • Aldo I. Perez Garcia
  • Arnulfo Ramos-Jiménez https://orcid.org/0000-0002-4347-6725
  • Rosa P. Hernández Torres
  • Isaac A. Chavez-Guevara

DOI:

https://doi.org/10.47197/retos.v47.95197

Palavras-chave:

deporte, fisiología del ejercicio, alto rendimiento deportivo, metabolismo, entrenamiento físico

Resumo

O uso diferencial de substratos energéticos (lipídios e carboidratos) durante a competição esportiva tem sido proposto como fator determinante do desempenho esportivo. Portanto, a presente revisão tem como objetivos: (i) descrever a associação da oxidação máxima de gordura (MFO) e sua correspondente intensidade (FATmax) com indicadores de desempenho esportivo em atletas de endurance, (ii) relatar o fenótipo metabólico de atletas pertencentes para diferentes disciplinas esportivas. Resultados dois: FATmax e MFO estão diretamente associados entre si, no entanto, apenas o MFO está positivamente associado ao tempo de corrida em atletas de triatlo, esquiadores cross-country profissionais e corredores de ultramaratona. Nessas populações, o consumo máximo de oxigênio (VO2máx) apresenta correlação positiva com a MFO, enquanto a idade apresenta associação inversa com a MFO. Tanto o FATmax quanto o MFO foram estudados em poucas disciplinas esportivas. Por outro lado, o MFO difere entre atletas de diferentes disciplinas esportivas, sendo maior em corredores de longa distância e esquiadores profissionais vs. ciclistas (0,55±0,09 vs. 0,48±0,05 g∙min-1), apesar das semelhanças no VO2máx e massa livre de gordura. Embora o MFO relatado em atletas de handebol, vôlei e basquete (0,59±0,24 g∙min-1), bem como em jogadores profissionais de futebol (0,69±0,15 g∙min-1), seja superior aos valores observados em corredores esquiadores de longa distância e elite. Conclusão: A relação entre MFO e FATmax com o desempenho esportivo varia de acordo com a idade, modalidade esportiva e gênero dos atletas, observando-se um fenótipo metabólico particular para cada modalidade esportiva. Portanto, além de medir o VO2máx e a intensidade de trabalho correspondente ao limiar de lactato ou segundo limiar ventilatório, recomenda-se incorporar o MFO e o FATmáx nas avaliações fisiológicas de atletas para otimizar seu desempenho físico.

Palavras-chave: esporte, fisiologia do exercício, alto rendimento esportivo, metabolismo, treinamento físico.

Referências

Achten, J., & Jeukendrup, A. E. (2004). Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. International Journal of Sports Medicine, 25(1), 32–37. https://doi.org/10.1055/s-2003-45231

Amaro-Gahete, F. J., Jurado-Fasoli, L., Triviño, A. R., Sanchez-Delgado, G., De-la-O, A., Helge, J. W., & Ruiz, J. R. (2019). Diurnal Variation of Maximal Fat-Oxidation Rate in Trained Male Athletes. International Journal of Sports Physi-ology and Performance, 14(8), 1140–1146. https://doi.org/10.1123/ijspp.2018-0854

Ball D. (2015). Metabolic and endocrine response to exercise: sympathoadrenal integration with skeletal muscle. Journal of Endocrinology, 224(2):R79-95. doi: 10.1530/JOE-14-0408.

Chávez-Guevara, I. A., Hernández-Torres, R. P., González-Rodríguez, E., Ramos-Jiménez, A., & Amaro-Gahete, F. J. (2022). Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: implica-tions for metabolic health and sports performance. European Journal of Applied Physiology, 10.1007/s00421-022-04936-0. Advance online publication. https://doi.org/10.1007/s00421-022-04936-0

Chávez-Guevara, I. A., Hernández-Torres, R. P., Trejo-Trejo, M., Moreno-Brito, V., González-Rodríguez, E., & Ramos-Jiménez, A. (2022). Association Among Different Aerobic Threshold Markers and FATmax in Men with Obesity. Re-search Quarterly for Exercise and Sport, 1–8. Advance online publication. https://doi.org/10.1080/02701367.2022.2065235

Che, K., Qiu, J., Yi, L., Zou, M., Li, Z., Carr, A., ... & Benardot, D. (2021). Effects of a short-term “fat adaptation with carbohydrate restoration” diet on metabolic responses and exercise performance in well-trained run-ners. Nutrients, 13(3), 1033.

Dandanell, S., Meinild-Lundby, A. K., Andersen, A. B., Lang, P. F., Oberholzer, L., Keiser, S., Robach, P., Larsen, S., Rønnestad, B. R., & Lundby, C. (2018). Determinants of maximal whole-body fat oxidation in elite cross-country ski-ers: Role of skeletal muscle mitochondria. Scandinavian Journal of Medicine & Science in Sports, 28(12), 2494–2504. https://doi.org/10.1111/sms.13298

Davies, C. T., Few, J., Foster, K. G., & Sargeant, A. J. (1974). Plasma catecholamine concentration during dynamic exer-cise involving different muscle groups. European Journal of Applied Physiology and Occupational Physiology, 32(3), 195–206. https://doi.org/10.1007/BF00423215

Dellal A, da Silva CD, Hill-Haas S, Wong del P, Natali AJ, De Lima JR, Bara Filho MG, Marins JJ, Garcia ES, Chamari K. Heart rate monitoring in soccer: interest and limits during competitive match play and training, practical application. The Journal of Strength and Conditioning Research. 2012 Oct;26(10):2890-906. doi:

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism, 17(2), 162–184. https://doi.org/10.1016/j.cmet.2012.12.012

Filipovic, M., Munten, S., Herzig, K. H., & Gagnon, D. D. (2021). Maximal Fat Oxidation: Comparison between Tread-mill, Elliptical and Rowing Exercises. Journal of Sports Science & Medicine, 20(1), 170–178. https://doi.org/10.52082/jssm.2021.170

Fisher, J. P., & Secher, N. H. (2019). Regulation of heart rate and blood pressure during exercise in humans. In Muscle and Exercise Physiology (pp. 541-560). Academic Press. https://doi.org/10.1016/B978-0-12-814593-7.00024-4

Fletcher, G., Eves, F. F., Glover, E. I., Robinson, S. L., Vernooij, C. A., Thompson, J. L., & Wallis, G. A. (2017). Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. The American Journal of Clinical Nutrition, 105(4), 864-872. https://doi.org/10.3945/ajcn.116.133520

Frandsen, J., Vest, S. D., Ritz, C., Larsen, S., Dela, F., & Helge, J. W. (2019). Plasma free fatty acid concentration is closely tied to whole body peak fat oxidation rate during repeated exercise. Journal of Applied Physiology 126(6), 1563–1571. https://doi.org/10.1152/japplphysiol.00995.2018

Frandsen, J., Vest, S., Larsen, S., Dela, F., & Helge, J. (2017). Maximal fat oxidation is related to performance in an Iron-man triathlon. International Journal of Sports Medicine, 38(13), 975-982. https://doi.org/10.1055/s-0043-117178

Galbo, H., Holst, J. J., & Christensen, N. J. (1975). Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. Journal of Applied Physiology, 38(1), 70–76. https://doi.org/10.1152/jappl.1975.38.1.70

González-Haro, C., Galilea, PA, González-de-Suso, JM, Drobnic, F., & Escanero, JF (2007). Maximal lipidic power in high competitive level triathletes and cyclists. British Journal of Sports Medicine, 41(1), 23–28. https://doi.org/10.1136/bjsm.2006.029603

Hackney A. C. (2006). Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Ex-pert review of endocrinology & metabolism, 1(6), 783–792. https://doi.org/10.1586/17446651.1.6.783

Hansen, M. T., Rømer, T., Frandsen, J., Larsen, S., Dela, F., & Helge, J. W. (2019). Determination and validation of peak fat oxidation in endurance-trained men using an upper body graded exercise test. Scandinavian Journal of Medicine & Science in Sports, 29(11), 1677–1690. https://doi.org/10.1111/sms.13519

Haralambie G. (1982). Enzyme activities in skeletal muscle of 13-15 years old adolescents. Bulletin Europeen de Physiopathol-ogie Respiratoire, 18(1), 65–74.

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4

Hornery, D. J., Farrow, D., Mujika, I., & Young, W. (2007). An integrated physiological and performance profile of pro-fessional tennis. British Journal of Sports Medicine, 41(8), 531–536. https://doi.org/10.1136/bjsm.2006.031351

Horton, T. J., Dow, S., Armstrong, M., & Donahoo, W. T. (2009). Greater systemic lipolysis in women compared with men during moderate-dose infusion of epinephrine and/or norepinephrine. Journal of Applied Physiology, 107(1), 200–210. https://doi.org/10.1152/japplphysiol.90812.2008

Jeukendrup A. E. (2002). Regulation of fat metabolism in skeletal muscle. Annals of the New York Academy of Sciences, 967, 217–235. https://doi.org/10.1111/j.1749-6632.2002.tb04278.x

Kaczor, J. J., Ziolkowski, W., Popinigis, J., & Tarnopolsky, M. A. (2005). Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatric Research, 57(3), 331–335. https://doi.org/10.1203/01.PDR.0000150799.77094.DE

Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2012). Physiology of Sport and Exercise, 8th ed. Human Kinetics (USA).

Lanzi, S., Codecasa, F., Cornacchia, M., Maestrini, S., Salvadori, A., Brunani, A., & Malatesta, D. (2014). Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PloS one, 9(2), e88707. https://doi.org/10.1371/journal.pone.0088707

MacIntosh, B. R., Murias, J. M., Keir, D. A., & Weir, J. M. (2021). What is moderate to vigorous exercise intensity? Fron-tiers in Physiology, 12:682233. https://doi.org/10.3389/fphys.2021.682233

MacLaren, D., & Morton, J. (2012). Biochemistry for Sport and Exercise Metabolism. Wiley-Blackwell (USA).

Martinez-Navarro, I., Montoya-Vieco, A., Collado, E., Hernando, B., & Hernando, C. (2020). Ultra-trail performance is differently predicted by endurance variables in men and women. International Journal of Sports Medicine. https://doi.org/10.1055/a-1255-3083

Mittendorfer, B., Horowitz, J. F., & Klein, S. (2002). Effect of gender on lipid kinetics during endurance exercise of moder-ate intensity in untrained subjects. American Journal of Physiology, Endocrinology and Metabolism, 283(1), E58–E65. https://doi.org/10.1152/ajpendo.00504.2001

Mueller Nikolovski, Z., Barbaresi, S., Cable, T., & Peric, R. (2020). Evaluating the influence of differences in methodologi-cal approach on metabolic thresholds and fat oxidation points relationship. European Journal of Sport Science, 21(1), 61–68.

Ørtenblad, N., & Nielsen, J. (2015). Muscle glycogen and cell function--Location, location, location. Scandinavian Journal of Medicine & Science in Sports, 25(Suppl 4), 34–40. https://doi.org/10.1111/sms.1259

Peric, R., Meucci, M., Bourdon, P. C., & Nikolovski, Z. (2018). Does the aerobic threshold correlate with the maximal fat oxidation rate in short stage treadmill tests?. The Journal of Sports Medicine and Physical Fitness, 58(10), 1412–1417. https://doi.org/10.23736/S0022-4707.17.07555-7

Peric R, Nikolovski Z, Meucci M, Tadger P, Ferri Marini C, Amaro-Gahete FJ. A Systematic Review and Meta-Analysis on the Association and Differences between Aerobic Threshold and Point of Optimal Fat Oxidation. Int J Environ Res Pub-lic Health. 2022;19(11):6479. Published 2022 May 26. doi:10.3390/ijerph19116479

Purdom, T., Kravitz, L., Dokladny, K., & Mermier, C. (2018). Understanding the factors that effect maximal fat oxidation. Journal of the International Society of Sports Nutrition, 15(1), 1–10. https://doi.org/10.1186/s12970-018-0207-1

Randell, R. K., Carter, J. M., Jeukendrup, A. E., Lizarraga, M. A., Yanguas, J. I., & Rollo, I. (2019). Fat Oxidation Rates in Professional Soccer Players. Medicine and Science in Sports and Exercise, 51(8), 1677–1683. https://doi.org/10.1249/MSS.0000000000001973

Randell, R. K., Rollo, I., Roberts, T. J., Dalrymple, K. J., Jeukendrup, A. E., Carter, J. M. (2017). Maximal Fat Oxidation Rates in an Athletic Population. Medicine & Science in Sports & Exercise, 49(1), 133–140. https://doi.org/10.1249/mss.0000000000001084

Riddell, M. C., Jamnik, V. K., Iscoe, K. E., Timmons, B. W., & Gledhill, N. (2008). Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. Journal of Applied Physi-ology, 105(2), 742–748. https://doi.org/10.1152/japplphysiol.01256.2007

Rodríguez-Zamora, L., Iglesias, X., Barrero, A., Chaverri, D., Erola, P., & Rodríguez, F. A. (2012). Physiological re-sponses in relation to performance during competition in elite synchronized swimmers. PloS one, 7(11), e49098. https://doi.org/10.1371/journal.pone.0049098

Rømer, T., Thunestvedt Hansen, M., Frandsen, J., Larsen, S., Dela, F. y Wulff Helge, J. (2020). The relationship between peak fat oxidation and prolonged endurance exercise performance double-Poling. Scandinavian Journal of Medicine & Sci-ence in Sports, 30(11), 2044-2056. https://doi.org/10.1111/sms.13769

Sahlin, K. (2009). Control of lipid oxidation at the mitochondrial level. Applied Physiology, Nutrition, & Metabolism, 34(3), 382–388. https://doi.org/10.1139/h09-027

San-Millán, I., Brooks, G. A. (2018). Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports medi-cine 48(2), 467–479. https://doi.org/10.1007/s40279-017-0751-x

Schwindling, S., Scharhag-Rosenberger, F., Kindermann, W., & Meyer, T. (2014). Limited benefit of Fatmax-test to derive training prescriptions. International Journal of Sports Medicine, 35(4), 280–285. https://doi.org/10.1055/s-0033-1349106

Soria, M., Ansón, M., Lou-Bonafonte, J. M., Andrés-Otero, M. J., Puente, J. J., & Escanero, J. (2020). Fat Oxidation Rate as a Function of Plasma Lipid and Hormone Response in Endurance Athletes. Journal of Strength & Conditioning Research, 34(1), 104–113. https://doi.org/10.1519/JSC.0000000000003034

Spriet, L. L. (2014). New Insights into the Interaction of Carbohydrate and Fat Metabolism During Exercise. Sports Medicine, 44(S1), 87–96. https://doi.org/10.1007/s40279-014-0154-1

Starritt, E. C., Howlett, R. A., Heigenhauser, G. J., & Spriet, L. L. (2000). Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. American journal of physiology. Endocrinology and metabolism, 278(3), E462–E468. https://doi.org/10.1152/ajpendo.2000.278.3.E462

Tolfrey, K., Jeukendrup, A. E., & Batterham, A. M. (2010). Group- and individual-level coincidence of the 'Fatmax' and lactate accumulation in adolescents. European Journal of Applied Physiology, 109(6), 1145–1153. https://doi.org/10.1007/s00421-010-1453-3

Torres-Ronda, L., Ric, A., Llabres-Torres, I., de Las Heras, B., & Schelling I Del Alcazar, X. (2016). Position-Dependent Cardiovascular Response and Time-Motion Analysis During Training Drills and Friendly Matches in Elite Male Basket-ball Players. Journal of Strength and Conditioning Research, 30(1), 60–70. https://doi.org/10.1519/JSC.0000000000001043

Trefts, E., Williams, A. S., & Wasserman, D. H. (2015). Exercise and the Regulation of Hepatic Metabolism. Progress in Molecular Biology and Translational Science, 135, 203–225. https://doi.org/10.1016/bs.pmbts.2015.07.010

Tsiloulis, T., & Watt, M. J. (2015). Exercise and the regulation of adipose tissue metabolism. Progress in Molecular Biology and Translational Science, 135, 175-201. doi:10.1016/bs.pmbts.2015.06.016.

Vest, S., Frandsen, J., Larsen, S., Dela, F., & Helge, J. (2018). Peak fat oxidation is not independently related to Ironman performance in women. International Journal of Sports Medicine, 39(12), 916-923. https://doi.org/10.1055/a-0660-0031

Zurbuchen, A., Lanzi, S., Voirol, L., Trindade, C. B., Gojanovic, B., Kayser, B., Bourdillon, N., Chenevière, X., & Mala-testa, D. (2020). Fat Oxidation Kinetics Is Related to Muscle Deoxygenation Kinetics During Exercise. Frontiers in Phy-siology, 11, 571. https://doi.org/10.3389/fphys.2020.00571

Publicado

2023-01-02

Como Citar

Molinar Contreras, M. ., Perez Garcia, A. I. ., Ramos-Jiménez, A., Hernández Torres, R. P., & Chavez-Guevara, I. A. . (2023). Aplicações da Oxidação Máxima de Gordura e FATmax na avaliação do desempenho esportivo em atletas de endurance: uma revisão narrativa. Retos, 47, 806–813. https://doi.org/10.47197/retos.v47.95197

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises

Artigos mais lidos do(s) mesmo(s) autor(es)