Effect of cardiovascular fitness on performance metrics in Bangladeshi women cricket: a role-specific analysis employing the harvard step test
DOI:
https://doi.org/10.47197/retos.v62.109634Keywords:
Endurance, Cricket Performance, Strike Rate, Bowling Economy, DismissalAbstract
Background: Cardiovascular fitness is essential for sports performance, enabling players to endure intense training, delay fatigue, and reduce injury risk—all critical factors for achieving optimal results in competitive sports like cricket. Emphasizing inclusive health ensures that all athletes enhance their cardiovascular fitness and overall performance. Purpose: This study aimed to investigate the impact of cardiovascular fitness, assessed using the Harvard Step Test, on the performance indicators of Bangladeshi women cricketers across their respective playing roles. Method: 104 players, including 34 batters, 38 bowlers, and 32 all-rounders, were voluntarily selected from the “Bangladesh National Women’s Cricket League 2021-22”. Cardiovascular fitness was evaluated through the Harvard Step Test, and role-specific performance metrics such as strike rate, bowling economy, and dismissal rates were analyzed. Statistical analyses included descriptive statistics and one-way ANOVA to assess differences in aerobic fitness across player roles and correlation analyses to examine the relationships between performance metrics and Harvard Step Test scores. Results: The multi-group comparison did not reveal a statistically significant difference in aerobic fitness across the playing roles, F(2, 101) = 0.668, p = 0.515. Additionally, the Harvard Step Test scores showed a weak and statistically non-significant relationship with role-specific performance metrics: strike rate (r = 0.20, p = 0.06) for batters, bowling economy (r = -0.09, p = 0.51) for bowlers, and dismissals (r = 0.10, p = 0.38) for fielders. Conclusion: Cardiovascular efficiency is similar across batters, bowlers, and all-rounders among Bangladeshi women cricketers. The Harvard Step Test score is not directly associated with role-specific performance in women's cricket. These findings suggest that training programs should adopt a holistic physical fitness approach, incorporating role-specific training to enhance the overall abilities of female cricketers and contribute to the development of women's cricket in Bangladesh.
References
Atan, T., Ayyıldız, T., & Akyol, P. (2012). Some physical fitness values of physical education department students engaged in different team sport branches. International Journal of Sport and Health Sciences, 6(11), 1943–1946. https://doi.org/10.5281/zenodo.1062074
Bandyopadhyay, A. (2015). Validity of cooper’s 12-minute run test for estimation of maximum oxygen uptake in male uni-versity students. Biology of Sport, 32(1), 59–63. https://doi.org/10.5604/20831862.1127283
Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The Yo-Yo Intermittent Recovery Test. Sports Medicine, 38(1), 37–51. https://doi.org/10.2165/00007256-200838010-00004
Bangsbo, J., Krustrup, P., González-Alonso, J., Boushel, R., & Saltin, B. (2000). Muscle oxygen kinetics at onset of intense dynamic exercise in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 279(3), R899–R906. https://doi.org/10.1152/ajpregu.2000.279.3.R899
Bartlett, R. M. (2003). The science and medicine of cricket: An overview and update. Journal of Sports Sciences, 21(9), 733–752. https://doi.org/10.1080/0264041031000140257
Basset, F. A., & Boulay, M. R. (2000). Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. European Journal of Applied Physiology, 81(3), 214–221. https://doi.org/10.1007/s004210050033
Bassett, D. R. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine & Science in Sports & Exercise, 70. https://doi.org/10.1097/00005768-200001000-00012
Beltz, N. M., Gibson, A. L., Janot, J. M., Kravitz, L., Mermier, C. M., & Dalleck, L. C. (2016). Graded exercise testing protocols for the determination of vo2max: Historical perspectives, progress, and future considerations. Journal of Sports Medicine, 2016(1), 1–12. https://doi.org/10.1155/2016/3968393
Biswas, S., & Bhattacharya, R. (2022). Effect of physical and physiological parameters on the performance of sub-elite Indian upper order batsmen in t20 matches: A pilot study. MOJ Sports Medicine, 5(2), 51–55. https://doi.org/10.15406/mojsm.2022.05.00118
Boby, F. A. (2023). A study on the impact of various motor fitness characteristics on performing ability in high and low-performing divisional women cricket players. Physical Education and Sports: Studies and Research, 2(1), 44–58. https://doi.org/10.56003/pessr.v2i1.179
Boby, F. A., Orhan, B. I., Apou, A. C., Sohel, M., Iqbal, A., & Mia, H. (2024). In pursuit of precısion: Assessing the impact of physical attributes on change of direction speed ın women’s cricket. Retos, 60, 841–849. https://doi.org/10.47197/retos.v60.107126
Brouha, L. (1943). The step test: A simple method of measuring physical fitness for muscular work in young men. Research Quarterly. American Association for Health, Physical Education and Recreation, 14(1), 31–37. https://doi.org/10.1080/10671188.1943.10621204
Buttar, K. K., Saboo, N., & kacker, S. (2019). A review: Maximal oxygen uptake (VO2 max) and its estimation methods. International Journal of Physical Education, Sports and Health, 6(6), 24–32.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
Cooper, K. H. (1968). A means of assessing maximal oxygen intake: Correlation between field and treadmill testing. JAMA, 203(3), 201–204. https://doi.org/10.1001/jama.1968.03140030033008
Franklin, B. A., Eijsvogels, T. M. H., Pandey, A., Quindry, J., & Toth, P. P. (2022). Physical activity, cardiorespiratory fitness, and cardiovascular health: A clinical practice statement of the american society for preventive cardiology Part I: bioenergetics, contemporary physical activity recommendations, benefits, risks, extreme exercise regimens, potential maladaptations. American Journal of Preventive Cardiology, 12, 1–14. https://doi.org/10.1016/j.ajpc.2022.100424
Gharbi, Z., Dardouri, W., Haj-Sassi, R., Chamari, K., & Souissi, N. (2015). Aerobic and anaerobic determinants of repeated sprint ability in team sports athletes. Biology of Sport, 32(3), 207–212. https://doi.org/10.5604/20831862.1150302
Gumusdag, H., Unlu, C., Cicek, G., Kartal, A., & Evli, F. (2013). The Yo-Yo intermittent recovery test as an assessment of aerobic-anaerobic fitness and game-related endurance in soccer. International Journal of Academic Research, 5(3), 148–153. https://doi.org/10.7813/2075-4124.2013/5-3/A.21
Hinman, R. S., & Bennell, K. L. (2023). Physical activity, exercise, and therapeutic exercise. In D. J. Hunter & J. P. Eyles (Eds.), Osteoarthritis Health Professional Training Manual (pp. 73–93). Academic Press. https://doi.org/10.1016/B978-0-323-99269-5.00002-5
Huntsman, H. D., DiPietro, L., Drury, D., & Miller, T. (2010). Development of a valid rowing-specific vo2max field test. Medicine & Science in Sports & Exercise, 42(5), 838. https://doi.org/10.1249/01.MSS.0000386627.23171.65
Jo-Anne, C. (2012). The Physical demands of batting and fast bowling in cricket. In K. R. Zaslav (Ed.), An International Per-spective on Topics in Sports Medicine and Sports Injury (pp. 321–332). InTech. https://doi.org/10.5772/27301
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. The Journal of Physiolo-gy, 586(1), 35–44. https://doi.org/10.1113/jphysiol.2007.143834
Kathayat, L. B., & Kumar, A. (2019). Comparison of cardiac output of cricket players before and after step test according to their playing positions. Journal of Exercise Science and Physiotherapy, 15(1). https://doi.org/10.18376/jesp/2019/v15/i1/111314
Kim, D.H., Cho, Y.H., Seo, T.B., Kim, D.H., Cho, Y.H., & Seo, T.B. (2022). Correlation between physical efficiency index using harvard step test and heart rate variation in college students. Journal of Exercise Rehabilitation, 18(6), 389–394. https://doi.org/10.12965/jer.2244400.200
Krishnan, A., & Revathy, G. S. (2022). Physical fitness index of medical students in Thrissur, Kerala, India: A cross-sectional study. Journal of Clinical and Diagnostic Research, 16(8), 12–16. https://doi.org/10.7860/JCDR/2022/57596.16733
Lockie, R. G., Callaghan, S. J., & Jeffriess, M. D. (2013). Analysis of Specific Speed Testing for Cricketers. The Journal of Strength & Conditioning Research, 27(11), 2981–2988. https://doi.org/10.1519/JSC.0b013e31828a2c56
Mayorga-Vega, D., Bocanegra-Parrilla, R., Ornelas, M., & Viciana, J. (2016). Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. PLOS ONE, 11(3), 1–24. https://doi.org/10.1371/journal.pone.0151671
Noakes, T. D., & Durandt, J. J. (2000). Physiological Requirements of Cricket. Journal of Sports Sciences, 18(12), 919–929. https://doi.org/10.1080/026404100446739
Patel, H., Alkhawam, H., Madanieh, R., Shah, N., Kosmas, C. E., & Vittorio, T. J. (2017). Aerobic vs Anaerobic Exercise Training Effects on the Cardiovascular System. World Journal of Cardiology, 9(2), 134–138. https://doi.org/10.4330/wjc.v9.i2.134
Petersen, C. J., Pyne, D. B., Dawson, B. T., Kellett, A. D., & Portus, M. R. (2011). Comparison of Training and Game Demands of National Level Cricketers. Journal of Strength and Conditioning Research, 25(5), 1306–1311. https://doi.org/10.1519/JSC.0b013e3181d82cfd
Portus, M. R., & Farrow, D. (2011). Enhancing cricket batting skill: Implications for biomechanics and skill acquisition research and practice. Sports Biomechanics, 10(4), 294–305. https://doi.org/10.1080/14763141.2011.629674
Pote, L., & Christie, C. J. (2014). Physiological and perceptual demands of high intensity sprinting between the wickets in cricket. International Journal of Sports Science & Coaching, 9(6), 1375–1382. https://doi.org/10.1260/1747-9541.9.6.1375
Powers, S. K., & Howley, E. T. (1995). Exercise Physiology: Theory and Application to Fitness and Performances. Medicine & Science in Sports & Exercise, 27(3), 466. https://doi.org/10.1249/00005768-199503000-00027
Raghuveer, G., Hartz, J., Lubans, D. R., Takken, T., Wiltz, J. L., Mietus-Snyder, M., Perak, A. M., Baker-Smith, C., Pie-tris, N., Edwards, N. M., & On behalf of the American Heart Association Young Hearts Athero, Hypertension and Obe-sity in the Young Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young. (2020). Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement from the American Heart As-sociation. Circulation, 142(7), 101–118. https://doi.org/10.1161/CIR.0000000000000866
Rosimus, C. (2019). A Review of the Physical Demands, Physiological Profile and the Role of Nutrition in Cricket. EC, 14(1), 14–24.
Saltin, B., & Astrand, P. O. (1967). Maximal oxygen uptake in athletes. Journal of Applied Physiology, 23(3), 353–358. https://doi.org/10.1152/jappl.1967.23.3.353
Santisteban, K. J., Lovering, A. T., Halliwill, J. R., & Minson, C. T. (2022). Sex Differences in VO2max and the Impact on Endurance-Exercise Performance. International Journal of Environmental Research and Public Health, 19(9), 4946–4946. https://doi.org/10.3390/ijerph19094946
Scanlan, A. T., Berkelmans, D. M., Vickery, W. M., & Kean, C. O. (2016). A Review of the Internal and External Physio-logical Demands Associated With Batting in Cricket. International Journal of Sports Physiology and Performance, 11(8), 987–997. https://doi.org/10.1123/ijspp.2016-0169
Taddonio, D. A., & Karpovich, P. V. (1951). The Harvard Step Test as a Measure of Endurance in Running. Research Quarter-ly. American Association for Health, Physical Education and Recreation, 22(3), 381–384. https://doi.org/10.1080/10671188.1951.10621328
Vangrunderbeek, H., & Delheye, P. (2013). Stepping From Belgium to the United States and Back: The Conceptualization and Impact of the Harvard Step Test, 1942–2012. Research Quarterly for Exercise and Sport, 84(2), 186–197. https://doi.org/10.1080/02701367.2013.784724
Vickery, W., Dascombe, B., & Duffield, R. (2014). Physiological, Movement and Technical Demands of Centre-Wicket Battlezone, Traditional Net-based Training and One-Day Cricket Matches: A Comparative Study of Sub-elite Cricket Players. Journal of Sports Sciences, 32(8), 722–737. https://doi.org/10.1080/02640414.2013.861605
Vickery, W., Dascombe, B. J., & Scanlan, A. T. (2018). A Review of the Physical and Physiological Demands Associated with Cricket Fast and Spin Bowlers. International Journal of Sports Science & Coaching, 13(2), 290–301. https://doi.org/10.1177/1747954117731051
Vickery, W., Duffield, R., Crowther, R., Beakley, D., Blanch, P., & Dascombe, B. J. (2018). Comparison of the Physical and Technical Demands of Cricket Players During Training and Match-Play. The Journal of Strength & Conditioning Research, 32(3), 1–27. https://doi.org/10.1519/JSC.0000000000001528
Wagh, S., Wagh, Y., & Nikam, K. D. (2022). Assessment of Role of Physical Fitness of Cricket Players in Response to the Various Tests. Asian Journal of Medical Sciences, 13(7), 223–227. https://doi.org/10.3126/ajms.v13i7.44498
Weldon, A., Clarke, N., Pote, L., & Bishop, C. (2020). Physical Profiling of International Cricket Players: An Investigation between Bowlers and Batters. Biology of Sport, 38(4), 507–515. https://doi.org/10.5114/biolsport.2021.100148
Zemková, E., & Pacholek, M. (2023). Performance in the yo-yo intermittent recovery test may improve with repeated trials: Does practice matter? Journal of Functional Morphology and Kinesiology, 8(2), 1–9. https://doi.org/10.3390/jfmk8020075
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Farjana Akter Boby, Shaybal Chanda, Vinosh Kumar Purushothaman, Baby Salini , Swamynathan Sanjaykumar, Bekir Erhan Orhan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.