Immersive virtual reality and therapeutic exercise as a pediatric rehabilitation tool in idiopathic mul-ticentric Castleman Disease-TAFRO: case study
DOI:
https://doi.org/10.47197/retos.v56.104886Keywords:
virtual reality, exergaming, Idiopathic multicentric Castleman disease, pediatrics, physical therapy modalities, TAFRO syndrome, Virtual Reality Exposure TherapyAbstract
Background. Therapeutic exercise has shown to be useful as a complementary therapy in the management of oncological processes and in severe pediatric chronic pathology, achieving benefits in different dimensions. Active video games or exergames with immersive virtual reality (IVR) could facilitate the practice of regular physical activity in this population at home. Material and methods. A 17-year-old adolescent survivor of idiopathic multicentric Castleman disease-TAFRO participated in a home-based exercise program with IVR for 8 weeks. The primary objective was to evaluate the feasibility of the program and the secondary objectives were to evaluate changes in physical and cognitive domains. Results. The intervention was feasible and safe. The scheduled sessions were completed and there were no adverse effects from IVR exposure. Usability was high (95%) and game experiences and perceived satisfaction with the program were positive. Regarding to the physical and cognitive domains, the results were generally significantly better in the post-intervention assessment, highlighting improvements of over 30% in the strength and functionality of the lower limbs, even under the interference of a cognitive task. Conclusions. This study highlights a novel approach to bring the regular practice of physical activity closer through exergames, showing potential benefits in the patient's physical and functional abilities and also suggesting an improvement in their emotional well-being through distracting strategies.
Keywords: virtual reality; exergaming; Idiopathic multicentric Castleman disease; pediatric; physical therapy modalities; TAFRO syndrome; Virtual Reality Exposure Therapy
References
Ahmad, M., Bani Mohammad, E., & Anshasi, H. A. (2020). Virtual Reality Technology for Pain and Anxiety Man-agement among Patients with Cancer: A Systematic Review. Pain Management Nursing, 21(6), 601-607. https://doi.org/10.1016/j.pmn.2020.04.002
Álvarez de la Campa Crespo M, Donegan T, Amestoy-Alonso B, Just A, Combalía A, Sanchez-Vives MV. (2023). Virtual embodiment for improving range of motion in patients with movement-related shoulder pain: an experi-mental study. J Orthop Surg Res. 18(1):729. https://doi: 10.1186/s13018-023-04158-w.
Baumann, F. T., Bloch, W., & Beulertz, J. (2013). Clinical exercise interventions in pediatric oncology: A systematic review. Pediatric Research, 74(4), 366-374. https://doi.org/10.1038/pr.2013.123
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4-7.
Campo-Prieto, P., Cancela Carral, J. M., Machado de Oliveira, I., & Rodríguez-Fuentes, G. (2021). Realidad Virtual Inmersiva en personas mayores: estudio de casos (Immersive Virtual Reality in older people: a case study). Retos, 39, 1001–1005. https://doi.org/10.47197/retos.v0i39.78195
Campo-Prieto, P., Cancela-Carral, J. M., Alsina-Rey, B., & Rodríguez-Fuentes, G. (2022). Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. Journal of Clinical Medicine, 11(13), 3911. https://doi.org/10.3390/jcm11133911
Campo-Prieto, P., Cancela-Carral, J. M., & Rodríguez-Fuentes, G. (2022a). Feasibility and Effects of an Immersive Virtual Reality Exergame Program on Physical Functions in Institutionalized Older Adults: A Randomized Clinical Trial. Sensors, 22(18), 6742. https://doi.org/10.3390/s22186742
Campo-Prieto, P., Cancela-Carral, J. M., & Rodríguez-Fuentes, G. (2022b). Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson’s Disease Patients. Sensors, 22(9), 3302. https://doi.org/10.3390/s22093302
Campo-Prieto, P., Rodríguez-Fuentes, G., & Cancela Carral, J. M. (2021). Traducción y adaptación transcultural al español del Simulator Sickness Questionnaire (Translation and cross-cultural adaptation to Spanish of the Simula-tor Sickness Questionnaire). Retos, 43, 503-509. https://doi.org/10.47197/retos.v43i0.87605
Campo-Prieto, P., Rodríguez-Fuentes, G., & Cancela-Carral, J. M. (2021). Immersive Virtual Reality Exergame Promotes the Practice of Physical Activity in Older People: An Opportunity during COVID-19. Multimodal Tech-nologies and Interaction, 5(9), 52. https://doi.org/10.3390/mti5090052
Combalia A, Sanchez-Vives MV, Donegan T. (2024).Immersive virtual reality in orthopaedics a narrative review. Int Orthop. 48(1):21-30. https://doi: 10.1007/s00264-023-05911-w
Cohen J. (1989). Statistical Power Analysis for the Behavioural Sciences. Acad Press. 37-42
Czech, O., Rutkowski, S., Kowaluk, A., Kiper, P., & Malicka, I. (2023). Virtual reality in chemotherapy support for the treatment of physical functions, fear, and quality of life in pediatric cancer patients: A systematic review and meta-analysis. Frontiers in Public Health, 11, 1039720. https://doi.org/10.3389/fpubh.2023.1039720
Demark‐Wahnefried, W., Werner, C., Clipp, E. C., Guill, A. B., Bonner, M., Jones, L. W., & Rosoff, P. M. (2005). Survivors of childhood cancer and their guardians: Current health behaviors and receptivity to Health Promotion Programs. Cancer, 103(10), 2171-2180. https://doi.org/10.1002/cncr.21009
Erhardsson, M., Alt Murphy, M., & Sunnerhagen, K. S. (2020). Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: A single-case design study. Journal of NeuroEngineering and Rehabili-tation, 17, 154. https://doi.org/10.1186/s12984-020-00788-x
Goldberg, A., Chavis, M., Watkins, J., & Wilson, T. (2012). The five-times-sit-to-stand test: Validity, reliability and detectable change in older females. Aging Clinical and Experimental Research, 24(4), 339-344. https://doi.org/10.1007/BF03325265
Graef, D. M., Crabtree, V. M., Srivastava, D. K., Li, C., Pritchard, M., Hinds, P. S., & Mandrell, B. (2018). Sleep and mood during hospitalization for high‐dose chemotherapy and hematopoietic rescue in pediatric medulloblastoma. Psycho-Oncology, 27(7), 1847-1853. https://doi.org/10.1002/pon.4737
Hedlefs Aguilar, M. I., & Garza Villegas, A. A. (2016). Análisis comparativo de la Escala de Usabilidad del Sistema (EUS) en dos versiones. RECI Revista Iberoamericana de las Ciencias Computacionales e Informática, 5(10), 44. https://doi.org/10.23913/reci.v5i10.48
Huang, T.-T., & Ness, K. K. (2011). Exercise Interventions in Children with Cancer: A Review. International Journal of Pediatrics, 2011, 1-11. https://doi.org/10.1155/2011/461512
Ijsselsteijn, W. A., & de Kort, Y. A. W. (2013). The Game Experience Questionnaire. Technische Universiteit Eindhoven.
Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An En-hanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203-220. https://doi.org/10.1207/s15327108ijap0303_3
Matamala-Gomez, M., Nierula, B., Donegan, T., Slater, M., & Sanchez-Vives, M. V. (2020). Manipulating the Per-ceived Shape and Color of a Virtual Limb Can Modulate Pain Responses. Journal of Clinical Medicine, 9(2), 291. https://doi.org/10.3390/jcm9020291
Matamala-Gomez, M., Slater, M., & Sanchez-Vives, M. V. (2022). Impact of virtual embodiment and exercises on functional ability and range of motion in orthopedic rehabilitation. Scientific Reports, 12(1), 5046. https://doi.org/10.1038/s41598-022-08917-3
Podsiadlo, D., & Richardson, S. (1991). The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. Journal of the American Geriatrics Society, 39(2), 142-148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
Quinn, S. E., Crandell, C. E., Blake, M. E., Bontrager, A. M., Dempsey, A. G., Lewis, D. J., Hamm, J. T., Flynn, J. M., Smith, G. S., & Wingard, C. J. (2020). The Correlative Strength of Objective Physical Assessment Against the ECOG Performance Status Assessment in Individuals Diagnosed With Cancer. Physical Therapy, 100(3), 416-428. https://doi.org/10.1093/ptj/pzz192
Rikli, R. E., & Jones, C. J. (1999). Functional Fitness Normative Scores for Community-Residing Older Adults, Ages 60-94. Journal of Aging and Physical Activity, 7(2), 162-181. https://doi.org/10.1123/japa.7.2.162
Rodríguez-Fuentes, G., Campo-Prieto, P., Souto, X. C., & Cancela Carral, J. M. (2024). Realidad virtual inmersiva y su influencia en parámetros fisiológicos de personas sanas (Immersive virtual reality and its influence on physiologi-cal parameters in healthy people). Retos, 51, 615–625. https://doi.org/10.47197/retos.v51.101164
Smith, M. A., Seibel, N. L., Altekruse, S. F., Ries, L. A. G., Melbert, D. L., O’Leary, M., Smith, F. O., & Reaman, G. H. (2010). Outcomes for Children and Adolescents With Cancer: Challenges for the Twenty-First Century. Journal of Clinical Oncology, 28(15), 2625-2634. https://doi.org/10.1200/JCO.2009.27.0421
Winter, C., Müller, C., Hoffmann, C., Boos, J., & Rosenbaum, D. (2010). Physical activity and childhood cancer. Pediatric Blood & Cancer, 54(4), 501-510. https://doi.org/10.1002/pbc.22271
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Retos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.