Realidad virtual inmersiva y su influencia en parámetros fisiológicos de personas sanas (Immersive virtual reality and its influence on physiological parameters in healthy people)

Autores/as

  • Gustavo Rodriguez-Fuentes HealthyFit Research Group, Department of Functional Biology and Health Sciences, Faculty of Physiother-apy, Galicia Sur Health Research Institute (IIS Galicia Sur), University of Vigo, E-36005, Sergas-UVIGO, Pontevedra, Spain https://orcid.org/0000-0003-2720-1497
  • Pablo Campo-Prieto HealthyFit Research Group, Department of Functional Biology and Health Sciences, Faculty of Physiother-apy, Galicia Sur Health Research Institute (IIS Galicia Sur), University of Vigo, E-36005, Sergas-UVIGO, Pontevedra, Spain http://orcid.org/0000-0003-1706-5639
  • Xose Carlos Souto Department Engineering Natural Resources and Environment, University of Vigo. University School of Fo-rest Engineering, University of Vigo, Pontevedra, 36005, Spain https://orcid.org/0000-0002-3344-5810
  • Jose Maria Cancela Carral HealthyFit Research Group, Department of Special Didactics, Faculty of Education and Sports Science, Ga-licia Sur Health Research Institute (IIS Galicia Sur), University of Vigo, E-36005, Sergas-UVIGO, Ponteve-dra, Spain https://orcid.org/0000-0003-2903-3829

DOI:

https://doi.org/10.47197/retos.v51.101164

Palabras clave:

realidad virtual, exergaming, cortisol, frecuencia cardiaca, presión arterial, voluntarios sanos, promoción de la salud, modalidades de fisioterapia

Resumen

Los videojuegos activos o exergames están en auge últimamente, ya que motivan y promueven el ejercicio físico y los hábitos de vida saludables. Los programas de ejercicio con realidad virtual inmersiva (RVI) podrían compararse con programas de entrenamiento tradicionales. Un punto de partida para ello sería explorar las respuestas fisiológicas que puede generar su uso. Por tanto, el objetivo principal fue evaluar la respuesta a través de ciertos indicadores fisiológicos (frecuencia cardiaca, presión arterial y estrés) después de una exposición a un exergame RVI en una muestra de adultos sanos, y, en segundo lugar, explorar su viabilidad, seguridad y usabilidad como herramienta para facilitar el ejercicio físico. Participaron en el estudio 37 adultos sanos (22-54 años, 54,1% mujeres). Realizaron una sesión de exergaming con el hardware HTC Vive ProTM. Todos completaron la sesión de RVI sin efectos adversos significativos. Todos los parámetros fisiológicos evaluados aumentaron significativamente en relación con los niveles preintervención. En cuanto a los resultados secundarios, el esfuerzo percibido correspondió a un ejercicio de moderado a intenso (6,3±0,5/10 en la escala CR10 de Borg ), la intervención se consideró segura (1/37 informaron de una conciencia estomacal moderada en el Simulator Sickness Questionnaire), con buena usabilidad (>76% en la System Usability Scale), valorada positivamente por la muestra (0,05/4 puntuaciones de experiencia negativa en el Game Experience Questionnaire-postjuego), y el 100% de la muestra informó de una experiencia buena o muy buena y la recomendaría. Estos resultados respaldan que nuestra sesión de exergame RVI fue factible y puede compararse con una actividad física de moderada a intensa, ya que supuso un esfuerzo percibido similar con aumentos significativos de la frecuencia cardiaca, la presión arterial y los niveles de cortisol salival.

Palabras clave: terapia por exposición a realidad virtual; exergaming; cortisol; frecuencia cardiaca; presión arterial; promoción de la salud; modalidades de fisioterapia.

Abstract. Exergames is booming recent times, as they are motivating and promote physical exercise and healthy lifestyle habits. Immersive virtual reality (IVR) exercise programs could be compared to traditional training programs. A starting point for this would be to explore the physiological responses that can be generated by its use. Therefore, the main objective was to evaluate the response across certain physiological indicators (heart rate, blood pressure and stress) after an IVR exergame exposure in a sample of healthy adults, and secondarily to explore its feasibility, safety and usability as a tool to facilitate physical exercise. 37 healthy adults (22-54 years, 54.1% women) participated in the study. They carried out one exergaming session with the HTC Vive ProTM hardware. All participants completed the IVR session without significant adverse effects. All physiological parameters evaluated increased significantly in relation to pre-intervention levels. Regarding to secondary outcomes, rating of perceived exertion (RPE) corresponded to a moderate to intense exercise (6.3±0.5/10 on the CR10 Borg Scale), the intervention was considered safe (1/37 reported a moderate stomach awareness in Simulator Sickness Questionnaire), with good usability (>76% in System Usability Scale), positively valued by the sample (0.05/4 negative experience scores in Game Experience Questionnaire-post game), and 100% of the sample reported a good or very good experience and would recommend it. These findings support that our IVR exergame session was feasible and can be compared to a moderate to intense physical activity, as it involved similar RPE with significant increases in heart rate, blood pressure and salivary cortisol levels.

Keywords: virtual reality exposure therapy; exergaming; cortisol; heart rate; blood pressure; health promotion; physical therapy modalities.

Citas

Anderson, T., Haake, S., Lane, A. R., & Hackney, A. C. (2016). Changes in resting salivary testosterone, cortisol and interleukin-6 as biomarkers of overtraining. Baltic Journal of Sport & Health Sciences, 101(2), 2-7.

Bank, P. J. M., Cidota, M. A., Ouwehand, P. W., & Lukosch, S. G. (2018). Patient-Tailored Augmented Reality Games for Assessing Upper Extremity Motor Impairments in Parkinson’s Disease and Stroke. Journal of Medical Systems, 42(12), 246. https://doi.org/10.1007/s10916-018-1100-9

Barsasella, D., Liu, M. F., Malwade, S., Galvin, C. J., Dhar, E., Chang, C.-C., Li, Y.-C. J., & Syed-Abdul, S. (2021). Effects of Virtual Reality Sessions on the Quality of Life, Happiness, and Functional Fitness among the Older Peo-ple: A Randomized Controlled Trial from Taiwan. Computer Methods and Programs in Biomedicine, 200, 105892. https://doi.org/10.1016/j.cmpb.2020.105892

Begdache, L., Sadeghzadeh, S., Pearlmutter, P., Derose, G., Krishnamurthy, P., & Koh, A. (2022). Dietary Factors, Time of the Week, Physical Fitness and Saliva Cortisol: Their Modulatory Effect on Mental Distress and Mood. In-ternational Journal of Environmental Research and Public Health, 19(12), 7001. https://doi.org/10.3390/ijerph19127001

Benham, S., Kang, M., & Grampurohit, N. (2019). Immersive Virtual Reality for the Management of Pain in Commu-nity-Dwelling Older Adults. OTJR: Occupation, Participation and Health, 39(2), 90-96. https://doi.org/10.1177/1539449218817291

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.

Brooke, J. (1995). SUS: A quick and dirty usability scale. Usability Evaluation in Industry, 189, 4-7.

Budde, H., Voelcker-Rehage, C., Pietrassyk-Kendziorra, S., Machado, S., Ribeiro, P., & Arafat, A. M. (2010). Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting. Psychoneuroendocrinology, 35(3), 382-391. https://doi.org/10.1016/j.psyneuen.2009.07.015

Campo-Prieto, P., Cancela-Carral, J. M., Alsina-Rey, B., & Rodríguez-Fuentes, G. (2022). Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. Journal of Clinical Medicine, 11(13), 3911. https://doi.org/10.3390/jcm11133911

Campo-Prieto, P., Cancela-Carral, J. M., & Rodríguez-Fuentes, G. (2022a). Feasibility and Effects of an Immersive Virtual Reality Exergame Program on Physical Functions in Institutionalized Older Adults: A Randomized Clinical Trial. Sensors, 22(18), 6742. https://doi.org/10.3390/s22186742

Campo-Prieto, P., Cancela-Carral, J. M., & Rodríguez-Fuentes, G. (2022b). Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson’s Disease Patients. Sensors, 22(9), 3302. https://doi.org/10.3390/s22093302

Campo-Prieto, P., Rodríguez-Fuentes, G., & Cancela Carral, J. M. (2021). Traducción y adaptación transcultural al español del Simulator Sickness Questionnaire (Translation and cross-cultural adaptation to Spanish of the Simula-tor Sickness Questionnaire). Retos, 43, 503-509. https://doi.org/10.47197/retos.v43i0.87605

Campo-Prieto, P., Rodríguez-Fuentes, G., & Cancela-Carral, J. M. (2021a). Can Immersive Virtual Reality Video-games Help Parkinson’s Disease Patients? A Case Study. Sensors, 21(14), 4825. https://doi.org/10.3390/s21144825

Campo-Prieto, P., Rodríguez-Fuentes, G., & Cancela-Carral, J. M. (2021b). Immersive Virtual Reality Exergame Promotes the Practice of Physical Activity in Older People: An Opportunity during COVID-19. Multimodal Tech-nologies and Interaction, 5(9), 52. https://doi.org/10.3390/mti5090052

Campo-Prieto, P., Cancela-Carral, J. M., Machado de Oliveira, I., & Rodríguez-Fuentes, G.(2021c). Realidad Virtual Immersiva en personas mayores: estudio de casos (Immersive Virtual Reality in older people: a case study). Retos, 39, 1001-1005. https://doi.org/10.47197/retos.v0i39.78195

Caplin, A., Chen, F. S., Beauchamp, M. R., & Puterman, E. (2021). The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor. Psychoneuroendocrinology, 131, 105336. https://doi.org/10.1016/j.psyneuen.2021.105336

Castro Sánchez, M., Martínez Martínez, A., Zurita Ortega, F., Chacón Cuberos, R., Espejo-Garcés, T., & Cabrera Fernandez, A. (2015). Uso de videojuegos y su relación con las conductas sedentarias en una población escolar y universitaria. Journal for Educators, Teachers and Trainers, 6(1), 40-51.

Chtourou, H., Hammouda, O., Aloui, A., Chaabouni, K., Makni-Ayedi, F., Wahl, M., Chaouachi, A., Chamari, K., & Souissi, N. (2014). The effect of time of day on hormonal responses to resistance exercise. Biological Rhythm Re-search, 45(2), 247-256. https://doi.org/10.1080/09291016.2013.805909

Cornelissen, V. A., & Fagard, R. H. (2005). Effects of Endurance Training on Blood Pressure, Blood Pressure–Regulating Mechanisms, and Cardiovascular Risk Factors. Hypertension, 46(4), 667-675. https://doi.org/10.1161/01.HYP.0000184225.05629.51

Cornelissen, V. A., & Smart, N. A. (2013). Exercise Training for Blood Pressure: A Systematic Review and Meta‐analysis. Journal of the American Heart Association, 2(1), e004473. https://doi.org/10.1161/JAHA.112.004473

Davies, C. T., & Few, J. D. (1973). Effects of exercise on adrenocortical function. Journal of Applied Physiology, 35(6), 887-891. https://doi.org/10.1152/jappl.1973.35.6.887

Denisova, A., Nordin, A. I., & Cairns, P. (2016). The Convergence of Player Experience Questionnaires. Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, 33-37. https://doi.org/10.1145/2967934.2968095

Dickinson, H. O., Mason, J. M., Nicolson, D. J., Campbell, F., Beyer, F. R., Cook, J. V., Williams, B., & Ford, G. A. (2006). Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled tri-als. Journal of Hypertension, 24(2), 215-233. https://doi.org/10.1097/01.hjh.0000199800.72563.26

Duque, G., Boersma, D., Loza-Diaz, G., Hassan, S., Suarez, H., Geisinger, D., Suriyaarachchi, P., Sharma, A., & Demontiero, O. (2013). Effects of balance training using a virtual-reality system in older fallers. Clinical Interven-tions in Aging, 8, 257-263. https://doi.org/10.2147/CIA.S41453

Feodoroff, B., Konstantinidis, I., & Froböse, I. (2019). Effects of Full Body Exergaming in Virtual Reality on Cardio-vascular and Muscular Parameters: Cross-Sectional Experiment. JMIR Serious Games, 7(3), e12324. https://doi.org/10.2196/12324

Gao, Z., & Lee, J. E. (2019). Emerging Technology in Promoting Physical Activity and Health: Challenges and Op-portunities. Journal of Clinical Medicine, 8(11), 1830. https://doi.org/10.3390/jcm8111830

Gatti, R., & De Palo, E. F. (2011). An update: Salivary hormones and physical exercise: Salivary hormones and exer-cise. Scandinavian Journal of Medicine & Science in Sports, 21(2), 157-169. https://doi.org/10.1111/j.1600-0838.2010.01252.x

González-Camarena, R., Carrasco-Sosa, S., Román-Ramos, R., Gaitán-González, M. J., Medina-Bañuelos, V., & Azpiroz-Leehan, J. (2000). Effect of static and dynamic exercise on heart rate and blood pressure variabilities: Medicine and Science in Sports and Exercise, 32(10), 1719-1728. https://doi.org/10.1097/00005768-200010000-00010

Hackney, A. C. (2006). Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Review of Endocrinology & Metabolism, 1(6), 783-792. https://doi.org/10.1586/17446651.1.6.783

Hedlefs Aguilar, M. I., & Garza Villegas, A. A. (2016). Análisis comparativo de la Escala de Usabilidad del Sistema (EUS) en dos versiones. RECI Revista Iberoamericana de las Ciencias Computacionales e Informática, 5(10), 44. https://doi.org/10.23913/reci.v5i10.48

Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress research. Psychoneu-roendocrinology, 34(2), 163-171. https://doi.org/10.1016/j.psyneuen.2008.10.026

Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating Cortisol levels: The intensity threshold effect. Journal of Endocrinological Investigation, 31(7), 587-591. https://doi.org/10.1007/BF03345606

IJsselsteijn, W. A., & de Kort, Y. A. W. (2013). The Game Experience Questionnaire. Technische Universiteit Eindhoven.

Inder, W. J., Dimeski, G., & Russell, A. (2012). Measurement of salivary cortisol in 2012—Laboratory techniques and clinical indications. Clinical Endocrinology, 77(5), 645-651. https://doi.org/10.1111/j.1365-2265.2012.04508.x

Jacks, D. E., Sowash, J., Anning, J., McGloughlin, T., & Andres, F. (2002). Effect of Exercise at Three Exercise Inten-sities on Salivary Cortisol. The Journal of Strength and Conditioning Research, 16(2), 286. https://doi.org/10.1519/00124278-200205000-00018

Jones, T., Skadberg, R., & Moore, T. (2018). A Pilot Study of the Impact of Repeated Sessions of Virtual Reality on Chronic Neuropathic Pain. International Journal of Virtual Reality, 18(1), 19-34. https://doi.org/10.20870/IJVR.2018.18.1.2901

Kaushik, A., Vasudev, A., Arya, S. K., Pasha, S. K., & Bhansali, S. (2014). Recent advances in cortisol sensing tech-nologies for point-of-care application. Biosensors and Bioelectronics, 53, 499-512. https://doi.org/10.1016/j.bios.2013.09.060

Kelley, G. A., & Kelley, K. S. (2000). Progressive Resistance Exercise and Resting Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Hypertension, 35(3), 838-843. https://doi.org/10.1161/01.HYP.35.3.838

Kelley, G. A., Kelley, K. S., & Tran, Z. V. (2001). Walking and resting blood pressure in adults: A meta-analysis. Preventive Medicine, 33(2 Pt 1), 120-127. https://doi.org/10.1006/pmed.2001.0860

Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator Sickness Questionnaire: An En-hanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology, 3(3), 203-220. https://doi.org/10.1207/s15327108ijap0303_3

Kim, A., Darakjian, N., & Finley, J. M. (2017). Walking in fully immersive virtual environments: An evaluation of potential adverse effects in older adults and individuals with Parkinson’s disease. Journal of NeuroEngineering and Re-habilitation, 14(1), 16. https://doi.org/10.1186/s12984-017-0225-2

Kim, Y. S., Won, J., Jang, S.-W., & Ko, J. (2022). Effects of Cybersickness Caused by Head-Mounted Display–Based Virtual Reality on Physiological Responses: Cross-sectional Study. JMIR Serious Games, 10(4), e37938. https://doi.org/10.2196/37938

Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary Cortisol in Psychobiological Research: An Overview. Neuro-psychobiology, 22(3), 150-169. https://doi.org/10.1159/000118611

Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent develop-ments and applications. Psychoneuroendocrinology, 19(4), 313-333. https://doi.org/10.1016/0306-4530(94)90013-2

Kudielka, B. M., Hellhammer, D. H., & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34(1), 2-18. https://doi.org/10.1016/j.psyneuen.2008.10.004

Lange, B., Koenig, S., Chang, C.-Y., McConnell, E., Suma, E., Bolas, M., & Rizzo, A. (2012). Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and Rehabilitation, 34(22), 1863-1870. https://doi.org/10.3109/09638288.2012.670029

Laudat, M. H., Cerdas, S., Fournier, C., Guiban, D., Guilhaume, B., & Luton, J. P. (1988). Salivary Cortisol Meas-urement: A Practical Approach to Assess Pituitary-Adrenal Function. The Journal of Clinical Endocrinology & Metabo-lism, 66(2), 343-348. https://doi.org/10.1210/jcem-66-2-343

Li, X., Niksirat, K. S., Chen, S., Weng, D., Sarcar, S., & Ren, X. (2020). The Impact of a Multitasking-Based Virtual Reality Motion Video Game on the Cognitive and Physical Abilities of Older Adults. Sustainability, 12(21), 9106. https://doi.org/10.3390/su12219106

Liao, Y.-Y., Tseng, H.-Y., Lin, Y.-J., Wang, C.-J., & Hsu, W.-C. (2020). Using virtual reality-based training to im-prove cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cogni-tive impairment. European Journal of Physical and Rehabilitation Medicine, 56(1), 47-57. https://doi.org/10.23736/S1973-9087.19.05899-4

Lloyd-Williams, F., Mair, F. S., & Leitner, M. (2002). Exercise training and heart failure: A systematic review of cur-rent evidence. The British Journal of General Practice: The Journal of the Royal College of General Practitioners, 52(474), 47-55.

Maranesi, E., Casoni, E., Baldoni, R., Barboni, I., Rinaldi, N., Tramontana, B., Amabili, G., Benadduci, M., Barba-rossa, F., Luzi, R., Di Donna, V., Scendoni, P., Pelliccioni, G., Lattanzio, F., Riccardi, G. R., & Bevilacqua, R. (2022). The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. International Journal of Environ-mental Research and Public Health, 19(22), 14818. https://doi.org/10.3390/ijerph192214818

McDonough, D. J., Pope, Z. C., Zeng, N., Liu, W., & Gao, Z. (2020). Comparison of College Students’ Blood Pres-sure, Perceived Exertion, and Psychosocial Outcomes During Virtual Reality, Exergaming, and Traditional Exer-cise: An Exploratory Study. Games for Health Journal, 9(4), 290-296. https://doi.org/10.1089/g4h.2019.0196

McGuigan, M. R., Egan, A. D., & Foster, C. (2004). Salivary Cortisol Responses and Perceived Exertion during High Intensity and Low Intensity Bouts of Resistance Exercise. Journal of Sports Science & Medicine, 3(1), 8-15.

Murray, C. D., Pettifer, S., Howard, T., Patchick, E. L., Caillette, F., Kulkarni, J., & Bamford, C. (2007). The treat-ment of phantom limb pain using immersive virtual reality: Three case studies. Disability and Rehabilitation, 29(18), 1465-1469. https://doi.org/10.1080/09638280601107385

Ozkul, C., Guclu-Gunduz, A., Yazici, G., Atalay Guzel, N., & Irkec, C. (2020). Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. Eu-ropean Journal of Integrative Medicine, 35, 101092. https://doi.org/10.1016/j.eujim.2020.101092

Parastesh, M., Jalali, S., & Moradi, J. (2019). The effect of circadian rhythm on blood lactate concentration and sali-vary cortisol after one session of exhausting exercise in athlete girls. Razi Journal of Medical Sciences, 26(9), 59-67.

Park, J., & Yim, J. (2016). A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Com-munity-Dwelling Elderly with a 3-D Virtual Reality Kayak Program. The Tohoku Journal of Experimental Medicine, 238(1), 1-8. https://doi.org/10.1620/tjem.238.1

Pearlmutter, P., DeRose, G., Samson, C., Linehan, N., Cen, Y., Begdache, L., Won, D., & Koh, A. (2020). Sweat and saliva cortisol response to stress and nutrition factors. Scientific Reports, 10(1), 19050. https://doi.org/10.1038/s41598-020-75871-3

Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., & Ray, C. A. (2004). American College of Sports Medicine position stand. Exercise and hypertension. Medicine & Science in Sports & Exercise, 36(3), 533-553. https://doi.org/10.1249/01.MSS.0000115224.88514.3A

Phu, S., Vogrin, S., Al Saedi, A., & Duque, G. (2019). Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clinical Interventions in Aging, Volume 14, 1567-1577. https://doi.org/10.2147/CIA.S220890

Popovic, B., Popovic, D., Macut, D., Antic, I. B., Isailovic, T., Ognjanovic, S., Bogavac, T., Kovacevic, V. E., Ilic, D., Petrovic, M., & Damjanovic, S. (2019). Acute Response to Endurance Exercise Stress: Focus on Catabol-ic/Anabolic Interplay Between Cortisol, Testosterone, and Sex Hormone Binding Globulin in Professional Ath-letes. Journal of Medical Biochemistry, 38(1), 6-12. https://doi.org/10.2478/jomb-2018-0016

Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., Kaspers, F., & Kirschbaum, C. (1997). Free Cortisol Levels after Awakening: A Reliable Biological Marker for the Assessment of Adrenocortical Activity. Life Sciences, 61(26), 2539-2549. https://doi.org/10.1016/S0024-3205(97)01008-4

Rhodes, R. E., & Kates, A. (2015). Can the Affective Response to Exercise Predict Future Motives and Physical Activi-ty Behavior? A Systematic Review of Published Evidence. Annals of Behavioral Medicine, 49(5), 715-731. https://doi.org/10.1007/s12160-015-9704-5

Roberts, K. (2019). The Effects of Physical Activity on Salivary Stress Biomarkers in College Students. Proceedings of the Oklahoma Academy of Science, 99, 99-105.

Saiz-González, P., McDonough, D., Liu, W., & Gao, Z. (2023). Acute Effects of Virtual Reality Exercise on Young Adults’ Blood Pressure and Feelings. International Journal of Mental Health Promotion, 54, 231. https://doi.org/10.32604/ijmhp.2023.027530

Silva, L. M. da, Flôres, F. S., & Matheus, S. C. (2021). Can exergames be used as an alternative to conventional exer-cises? Motriz: Revista de Educação Física, 27, e1021020197. https://doi.org/10.1590/s1980-65742021019720

Smith, J. (2003). Stress and aging: Theoretical and empirical challenges for interdisciplinary research. Neurobiology of Aging, 24, S77-S80. https://doi.org/10.1016/S0197-4580(03)00049-6

Szpak, A., Michalski, S. C., & Loetscher, T. (2020). Exergaming With Beat Saber: An Investigation of Virtual Reality Aftereffects. Journal of Medical Internet Research, 22(10), e19840. https://doi.org/10.2196/19840

Thapa, N., Park, H. J., Yang, J.-G., Son, H., Jang, M., Lee, J., Kang, S. W., Park, K. W., & Park, H. (2020). The Effect of a Virtual Reality-Based Intervention Program on Cognition in Older Adults with Mild Cognitive Impair-ment: A Randomized Control Trial. Journal of Clinical Medicine, 9(5), 1283. https://doi.org/10.3390/jcm9051283

Vining, R. F., McGinley, R. A., Maksvytis, J. J., & Ho, K. Y. (1983). Salivary Cortisol: A Better Measure of Adrenal Cortical Function than Serum Cortisol. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 20(6), 329-335. https://doi.org/10.1177/000456328302000601

Viru, M., Hackney, A., Karelson, K., Janson, T., Kuus, M., & Viru, A. (2010). Competition effects on physiological responses to exercise: Performance, cardiorespiratory and hormonal factors. Acta Physiologica Hungarica, 97(1), 22-30. https://doi.org/10.1556/APhysiol.97.2010.1.3

Whelton, S. P., Chin, A., Xin, X., & He, J. (2002). Effect of Aerobic Exercise on Blood Pressure: A Meta-Analysis of Randomized, Controlled Trials. Annals of Internal Medicine, 136(7), 493. https://doi.org/10.7326/0003-4819-136-7-200204020-00006

Winter, C., Kern, F., Gall, D., Latoschik, M. E., Pauli, P., & Käthner, I. (2021). Immersive virtual reality during gait rehabilitation increases walking speed and motivation: A usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Journal of NeuroEngineering and Rehabilitation, 18(1), 68. https://doi.org/10.1186/s12984-021-00848-w

Wu, S., Ji, H., Won, J., Jo, E.-A., Kim, Y.-S., & Park, J.-J. (2023). The Effects of Exergaming on Executive and Phys-ical Functions in Older Adults With Dementia: Randomized Controlled Trial. Journal of Medical Internet Research, 25, e39993. https://doi.org/10.2196/39993

Wunsch, K., Wurst, R., von Dawans, B., Strahler, J., Kasten, N., & Fuchs, R. (2019). Habitual and acute exercise effects on salivary biomarkers in response to psychosocial stress. Psychoneuroendocrinology, 106, 216-225. https://doi.org/10.1016/j.psyneuen.2019.03.015

Descargas

Publicado

2024-01-01

Cómo citar

Rodriguez-Fuentes, G. ., Campo-Prieto, P., Souto, X. C., & Cancela Carral, J. M. (2024). Realidad virtual inmersiva y su influencia en parámetros fisiológicos de personas sanas (Immersive virtual reality and its influence on physiological parameters in healthy people). Retos, 51, 615–625. https://doi.org/10.47197/retos.v51.101164

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas