The effect of high-intensity circuit training on physical fitness in healthy young males

Authors

  • Mahmud Yunus Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang https://orcid.org/0000-0002-0708-867X
  • Slamet Raharjo Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang https://orcid.org/0000-0002-0708-867X
  • Witri Suwanto Study Program of Sports Coaching Education, Faculty of Teacher Training and Education, Universitas Tanjungpura
  • Ramdan Pelana Department of Sport Science, Faculty of Sport Science, Universitas Negeri Jakarta
  • Nguyen Tra Giang Institute of Sports Science and Management, University of Management and Technology Hochiminh City

DOI:

https://doi.org/10.47197/retos.v54.102904

Keywords:

Healthy male, high-intensity circuit training, physical fitness, sedentary lifestyle

Abstract

Sedentism, along with a lack of physical activity, contributes to a decline in quality of life and is the fourth greatest cause of mortality. Changing sedentary lifestyle choices, such as increased physical exercise, is a method of health problem prevention. As a result, the purpose of this study is to investigate the effect of high-intensity circuit training on developing physical fitness in young healthy guys. A proper experimental procedure was employed in this investigation, including a pre-test - post-test control group design. Twenty Malang City students aged 19 to 22 were selected and separated into CNTL (control group) and HICT (high-intensity circuit training group). The high-intensity circuit training (HICT) intervention was performed three times per week for eight weeks. Physical fitness (VO2max, strength, speed, and agility) was assessed pre- and post-intervention. An independent sample t-test with a significance threshold of 5% is used in the data analysis procedure. The findings revealed a delta (∆) difference in the average gain in physical fitness (VO2max, strength, speed, and agility) between CNTL and HICT (p ≤ 0.01). This study shows that high-intensity circuit training done three times per week for eight weeks improves physical fitness in healthy young males.

Keywords: Healthy male; high-intensity circuit training; physical fitness; sedentary lifestyle

References

Agostini, D., Gervasi, M., Ferrini, F., Bartolacci, A., Stranieri, A., Piccoli, G., … Donati Zeppa, S. (2023). An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients, 15(8), 1802. https://doi.org/10.3390/nu15081802.

Bohlen, L. C., LaRowe, L. R., Dunsiger, S. I., Dionne, L., Griffin, E., Kim, A. E., … Williams, D. M. (2023). Comparing a recommendation for self-paced versus moderate intensity physical activity for midlife adults: Rationale and design. Contemporary clinical trials, 128, 107169. https://doi.org/10.1016/j.cct.2023.107169.

Caballero-García, A., Noriega-González, D. C., Roche, E., Drobnic, F., & Córdova, A. (2023). Effects of L-Carnitine Intake on Exercise-Induced Muscle Damage and Oxidative Stress: A Narrative Scoping Review. Nutrients, 15(11), 2587. https://doi.org/10.3390/nu15112587.

Chatzinikita, E., Maridaki, M., Palikaras, K., Koutsilieris, M., & Philippou, A. (2023). The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells, 12(5), 716. https://doi.org/10.3390/cells12050716.

Chen, Y. L., Ma, Y. C., Tang, J., Zhang, D., Zhao, Q., Liu, J. J., … Zou, C. G. (2023). Physical exercise attenuates age-related muscle atrophy and exhibits anti-ageing effects via the adiponectin receptor 1 signalling. Journal of cachexia, sarcopenia and muscle, 10.1002/jcsm.13257. Advance online publication. https://doi.org/10.1002/jcsm.13257.

Ding, D., Lawson, K. D., Kolbe-Alexander, T. L., Finkelstein, E. A., Katzmarzyk, P. T., van Mechelen, W., … Lancet Physical Activity Series 2 Executive Committee (2016). The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet (London, England), 388(10051), 1311–1324. https://doi.org/10.1016/S0140-6736(16)30383-X.

Distefano, G., & Goodpaster, B. H. (2018). Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harbor perspectives in medicine, 8(3), a029785. https://doi.org/10.1101/cshperspect.a029785.

Galán-Arroyo, C., Mendoza-Muñoz , D. M. ., Mañana-Iglesia, C., & Rojo-Ramos , J. (2024). Physical fitness, indicator of healthy preadolescent development. Retos, 52, 447–456. https://doi.org/10.47197/retos.v52.99772.

Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. The Lancet. Global health, 6(10), e1077–e1086. https://doi.org/10.1016/S2214-109X(18)30357-7.

Gutiérrez-Arroyo, J., García-Heras, F., Carballo-Leyenda, B., Villa-Vicente, J. G., Rodríguez-Medina, J., & Rodríguez-Marroyo, J. A. (2023). Effect of a High-Intensity Circuit Training Program on the Physical Fitness of Wildland Firefighters. International journal of environmental research and public health, 20(3), 2073. https://doi.org/10.3390/ijerph20032073.

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4.

Higgins, J.K., & Kleimbaun, A.P. (1985). Design Methodology for Randomized Clinical Trials; Family Health International: Arlington, VA, USA. pp. 24–25.

Iwayama, K., Seol, J., & Tokuyama, K. (2023). Exercise Timing Matters for Glycogen Metabolism and Accumulated Fat Oxidation over 24 h. Nutrients, 15(5), 1109. https://doi.org/10.3390/nu15051109.

Kang, J. S., Kim, M. J., Kwon, E. S., Lee, K. P., Kim, C., Kwon, K. S., & Yang, Y. R. (2023). Identification of novel genes associated with exercise and calorie restriction effects in skeletal muscle. Aging, 15(11), 4667–4684. https://doi.org/10.18632/aging.204793.

Kennedy, M., Roche, S., McGowan, M., Singleton, E., Elsheikh, E., O'Donovan, M., … iPATH study group (2023). Physical activity, physical fitness and cardiometabolic risk amongst adults with moderate and severe haemophilia. Haemophilia : the official journal of the World Federation of Hemophilia, 29(1), 72–83. https://doi.org/10.1111/hae.14653.

Katzmarzyk, P. T., Friedenreich, C., Shiroma, E. J., & Lee, I. M. (2022). Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. British journal of sports medicine, 56(2), 101–106. https://doi.org/10.1136/bjsports-2020-103640.

McDougle, J. M., Mangine, G. T., Townsend, J. R., Jajtner, A. R., & Feito, Y. (2023). Acute physiological outcomes of high-intensity functional training: a scoping review. PeerJ, 11, e14493. https://doi.org/10.7717/peerj.14493.

Paradisis, G. P., Zacharogiannis, E., Mandila, D., Smirtiotou, A., Argeitaki, P., & Cooke, C. B. (2014). Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake. Journal of human kinetics, 41, 81–87. https://doi.org/10.2478/hukin-2014-0035.

Peiris, C. L., Gallagher, A., Taylor, N. F., & McLean, S. (2023). Behavior Change Techniques Improve Adherence to Physical Activity Recommendations for Adults with Metabolic Syndrome: A Systematic Review. Patient preference and adherence, 17, 689–697. https://doi.org/10.2147/PPA.S393174.

Permana, D. A., Kusnanik, N. W., Nurhasan, N., & Raharjo, S. (2022). A Six-Week Plyometric Training Program Improves Explosive Power and Agility in Professional Athletes of East Java. Physical Education Theory and Methodology, 22(4), 510–515. https://doi.org/10.17309/tmfv.2022.4.08.

Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., … Olson, R. D. (2018). The Physical Activity Guidelines for Americans. JAMA, 320(19), 2020–2028. https://doi.org/10.1001/jama.2018.14854.

Puspodari, P., Wiriawan, O., Setijono, H., Arfanda, P. E., Himawanto, W., Koestanto, S. H., … Pranoto, A. (2022). Effectiveness of Zumba Exercise on Maximum Oxygen Volume, Agility, and Muscle Power in Female Students. Physical Education Theory and Methodology, 22(4), 478–484. https://doi.org/10.17309/tmfv.2022.4.04.

Putera, S. H. P., Setijono, H., Wiriawan, O., Nurhasan, Muhammad, H. N., Hariyanto, A., … Pranoto, A. (2023). Positive Effects of Plyometric Training on Increasing Speed, Strength and Limb Muscles Power in Adolescent Males. Physical Education Theory and Methodology, 23(1), 42–48. https://doi.org/10.17309/tmfv.2023.1.06.

San-Millán I. (2023). The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel, Switzerland), 12(4), 782. https://doi.org/10.3390/antiox12040782.

Santos, A. C., Willumsen, J., Meheus, F., Ilbawi, A., & Bull, F. C. (2023). The cost of inaction on physical inactivity to public health-care systems: a population-attributable fraction analysis. The Lancet. Global health, 11(1), e32–e39. https://doi.org/10.1016/S2214-109X(22)00464-8.

Soares Fernandes Jacomo da Silva, W. ., De Oliveira, F., Gonçalves Corrêa Neto, V., Rodrigues Marques Neto, S., Colonna de Miranda, M. J., Dias da Silva, L., … Rios Monteiro, E. (2024). Physical fitness analysis of strength training and functional fitness practitioners. Retos, 52, 185–190. https://doi.org/10.47197/retos.v52.101062.

Sarto, F., Bottinelli, R., Franchi, M. V., Porcelli, S., Simunič, B., Pišot, R., & Narici, M. V. (2023). Pathophysiological mechanisms of reduced physical activity: Insights from the human step reduction model and animal analogues. Acta physiologica (Oxford, England), 238(3), e13986. https://doi.org/10.1111/apha.13986.

Schäfer, J. A., Sutandy, F. X. R., & Münch, C. (2023). Omics-based approaches for the systematic profiling of mitochondrial biology. Molecular cell, 83(6), 911–926. https://doi.org/10.1016/j.molcel.2023.02.015.

Schmidt, D., Anderson, K., Graff, M., & Strutz, V. (2016). The effect of high-intensity circuit training on physical fitness. The Journal of sports medicine and physical fitness, 56(5), 534–540.

Shang, E., Nguyen, T. T. T., Westhoff, M. A., Karpel-Massler, G., & Siegelin, M. D. (2023). Targeting cellular respiration as a therapeutic strategy in glioblastoma. Oncotarget, 14, 419–425. https://doi.org/10.18632/oncotarget.28424.

Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel, Switzerland), 12(2), 501. https://doi.org/10.3390/antiox12020501.

Wypych-Ślusarska, A., Majer, N., Krupa-Kotara, K., & Niewiadomska, E. (2023). Active and Happy? Physical Activity and Life Satisfaction among Young Educated Women. International journal of environmental research and public health, 20(4), 3145. https://doi.org/10.3390/ijerph20043145.

Zhu, Y., Zhou, X., Zhu, A., Xiong, S., Xie, J., & Bai, Z. (2023). Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Frontiers in Physiology, 14, 1196426. https://doi.org/10.3389/fphys.2023.1196426.

Zou, Y. Y., Tang, X. B., Chen, Z. L., Liu, B., Zheng, L., Song, M. Y., … Tang, C. F. (2023). Exercise intervention improves mitochondrial quality in non-alcoholic fatty liver disease zebrafish. Frontiers in endocrinology, 14, 1162485. https://doi.org/10.3389/fendo.2023.1162485.

Downloads

Published

2024-05-01

How to Cite

Yunus, M., Raharjo, S., Suwanto, W., Pelana, R., & Giang, N. T. (2024). The effect of high-intensity circuit training on physical fitness in healthy young males. Retos, 54, 243–247. https://doi.org/10.47197/retos.v54.102904

Issue

Section

Original Research Article