El entrenamiento regular en bicicleta ergonómica de alta intensidad es eficaz para reducir el IMC, el porcentaje de grasa corporal y la HbA1c y mejorar la masa muscular en pacientes con diabetes tipo 2

Autores/as

  • Waskito Aji Suryo Putro Universitas Pendidikan Muhammadiyah Sorong https://orcid.org/0000-0001-5600-3241
  • Alva Cherry Mustamu Ministry of Health Polytechnic Sorong https://orcid.org/0000-0002-6682-514X
  • Witri Suwanto Study Program of Physical Education, Faculty of Teacher Training and Education, Universitas Tanjungpura

DOI:

https://doi.org/10.47197/retos.v62.110777

Palabras clave:

Estilo de vida saludable, salud metabólica, ejercicio regular, sensibilidad a la insulina, diabetes tipo 2

Resumen

Este estudio tiene como objetivo examinar los efectos del entrenamiento en bicicleta estática de alta intensidad en cuatro parámetros clave cruciales para controlar la diabetes tipo 2 (DT2): índice de masa corporal (IMC), porcentaje de grasa corporal, hemoglobina A1C (HbA1c) y masa muscular. Un total de 24 pacientes varones con diabetes tipo 2, de entre 41 y 65 años, participaron en el estudio y se sometieron a una intervención de entrenamiento en ergociclo de alta intensidad, realizada tres veces por semana durante ocho semanas. Se observaron parámetros como HbA1c, IMC, PBF y SM antes y después de la intervención. Las técnicas de análisis de datos incluyeron pruebas t para muestras pareadas y pruebas t para muestras independientes con un nivel de significancia del 5%. Los resultados indicaron una reducción significativa en HbA1c, IMC y PBF, así como un aumento significativo en SM antes y después de la intervención de entrenamiento en bicicleta ergo de alta intensidad (p ≤ 0,05). Además, observamos una reducción en ∆-HbA1c, ∆-BMI, ∆-PBF y un aumento en ∆-SM entre grupos (p ≤ 0,05). Estos hallazgos demuestran que el entrenamiento regular en bicicleta ergo de alta intensidad es significativamente efectivo para reducir el IMC, el porcentaje de grasa corporal y los niveles de HbA1c, al tiempo que aumenta la masa muscular en pacientes con diabetes tipo 2. Este resultado proporciona evidencia sólida de que el entrenamiento en ergociclo de alta intensidad se puede utilizar como modalidad para mejorar la resistencia a la insulina en pacientes con diabetes tipo 2.

Citas

Alhassani, R. Y., Bagadood, R. M., Balubaid, R. N., Barno, H. I., Alahmadi, M. O., & Ayoub, N. A. (2021). Drug Therapies Affecting Renal Function: An Overview. Cureus, 13(11). https://doi.org/10.7759/cureus.19924.

Al-Rawaf, H. A., Gabr, S. A., Iqbal, A., & Alghadir, A. H. (2023). High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. Medicina (Kaunas, Lithuania), 59(7), 1320. https://doi.org/10.3390/medicina59071320.

American Diabetes Association (ADA) Professional Practice Committee (2024). 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes care, 47(Suppl 1), S20–S42. https://doi.org/10.2337/dc24-S002.

Aneis, Y., Elsisi, H., & Mounir, K. (2015). Impact of high-intensity interval training on HbA1c in patients with type 2 diabetes mellitus. Bulletin of Faculty of Physical Therapy, 20(2), 168. https://doi.org/10.4103/1110-6611.174710.

Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International journal of environmental research and public health, 18(13), 7201. https://doi.org/10.3390/ijerph18137201.

Australian Institute of Health and Welfare (AIHW). (2024). Diabetes: Australian facts. Retrieved from https://www.aihw.gov.au/reports/diabetes/diabetes.

Cannata, F., Vadalà, G., Russo, F., Papalia, R., Napoli, N., & Pozzilli, P. (2020). Beneficial Effects of Physical Activity in Diabetic Patients. Journal of Functional Morphology and Kinesiology, 5(3). https://doi.org/10.3390/jfmk5030070.

Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: A review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7-23. https://doi.org/10.1007/s00125-016-4106-1.

Cavalli, N. P., de Mello, M. B., Righi, N. C., Schuch, F. B., Signori, L. U., & da Silva, A. M. V. (2024). Effects of high-intensity interval training and its different protocols on lipid profile and glycaemic control in type 2 diabetes: A meta-analysis. Journal of sports sciences, 42(4), 333–349. https://doi.org/10.1080/02640414.2024.2330232.

Chou, Y. H., Cheng, Y. Y., Nfor, O. N., Chen, P. H., Chen, C. H., Chen, H. L., Chang, B. J., Tantoh, D. M., Huang, C. N., & Liaw, Y. P. (2022). Effects of aerobic and resistance exercise on glycosylated hemoglobin (HbA1c) concentrations in non-diabetic Taiwanese individuals based on the waist-hip ratio. PloS one, 17(5), e0267387. https://doi.org/10.1371/journal.pone.0267387

Crawford, A. L., & Laiteerapong, N. (2024). Type 2 Diabetes. Annals of internal medicine, 177(6), ITC81–ITC96. https://doi.org/10.7326/AITC202406180.

da Silva, D. E., Grande, A. J., Roever, L., Tse, G., Liu, T., Biondi-Zoccai, G., & de Farias, J. M. (2019). High-Intensity Interval Training in Patients with Type 2 Diabetes Mellitus: a Systematic Review. Current atherosclerosis reports, 21(2), 8. https://doi.org/10.1007/s11883-019-0767-9.

de Mello, M. B., Righi, N. C., Schuch, F. B., Signori, L. U., & da Silva, A. M. V. (2022). Effect of high-intensity interval training protocols on VO2max and HbA1c level in people with type 2 diabetes: A systematic review and meta-analysis. Annals of physical and rehabilitation medicine, 65(5), 101586. https://doi.org/10.1016/j.rehab.2021.101586.

de Oliveira Teles, G., da Silva, C. S., Rezende, V. R., & Rebelo, A. C. S. (2022). Acute Effects of High-Intensity Interval Training on Diabetes Mellitus: A Systematic Review. International journal of environmental research and public health, 19(12), 7049. https://doi.org/10.3390/ijerph19127049.

Deng, W., Zhao, L., Chen, C., Ren, Z., Jing, Y., Qiu, J., & Liu, D. (2024). National burden and risk factors of diabetes mellitus in China from 1990 to 2021: Results from the Global Burden of Disease study 2021. Journal of Diabetes, 16(10), e70012. https://doi.org/10.1111/1753-0407.70012.

Durrer, C., Francois, M., Neudorf, H., & Little, J. P. (2017). Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. American journal of physiology. Regulatory, integrative and comparative physiology, 312(4), R529–R538. https://doi.org/10.1152/ajpregu.00348.2016.

Eid, S. A., Elzinga, S. E., Kim, B., Rumora, A. E., Hayes, J. M., Carter, A., Pacut, C., Allouch, A. M., Koubek, E. J., & Feldman, E. L. (2024). High-intensity interval training, caloric restriction, or their combination have beneficial effects on metabolically acquired peripheral neuropathy. Diabetes, db230997. Advance online publication. https://doi.org/10.2337/db23-0997.

Feng, J., Zhang, Q., Chen, B., Chen, J., Wang, W., Hu, Y., Yu, J., & Huang, H. (2024). Effects of high-intensity intermittent exercise on glucose and lipid metabolism in type 2 diabetes patients: a systematic review and meta-analysis. Frontiers in endocrinology, 15, 1360998. https://doi.org/10.3389/fendo.2024.1360998.

Fianu, A., Jégo, S., Révillion, C., Lenclume, V., Neufcourt, L., Viale, F., Bouscaren, N., & Cubizolles, S. (2024). Determinants of adult sedentary behavior and physical inactivity for the primary prevention of diabetes in historically disadvantaged communities: A representative cross-sectional population-based study from Reunion Island. PLOS ONE, 19(8). https://doi.org/10.1371/journal.pone.0308650.

Francois, M. E., & Little, J. P. (2015). Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes spectrum : a publication of the American Diabetes Association, 28(1), 39–44. https://doi.org/10.2337/diaspect.28.1.39.

Fu, L., Cheng, H., Xiong, J., Xiao, P., Shan, X., Li, Y., Li, Y., Zhao, X., & Mi, J. (2024). Mediating role of inflammatory biomarkers in the causal effect of body composition on glycaemic traits and type 2 diabetes. Diabetes, obesity & metabolism, 26(11), 5444–5454. https://doi.org/10.1111/dom.15923.

Gallo, G., Desideri, G., & Savoia, C. (2024). Update on Obesity and Cardiovascular Risk: From Pathophysiology to Clinical Management. Nutrients, 16(16), 2781. https://doi.org/10.3390/nu16162781.

Gaweł, E., Hall, B., Siatkowski, S., Grabowska, A., & Zwierzchowska, A. (2024). The Combined Effects of High-Intensity Interval Exercise Training and Dietary Supplementation on Reduction of Body Fat in Adults with Overweight and Obesity: A Systematic Review. Nutrients, 16(3). https://doi.org/10.3390/nu16030355.

Guo, H., Wan, C., Zhu, J., Jiang, X., & Li, S. (2024). Association of systemic immune-inflammation index with insulin resistance and prediabetes: a cross-sectional study. Frontiers in endocrinology, 15, 1377792. https://doi.org/10.3389/fendo.2024.1377792.

Haines, M. S., Dichtel, L. E., Santoso, K., Torriani, M., Miller, K. K., & Bredella, M. A. (2020). Association between muscle mass and insulin sensitivity independent of detrimental adipose depots in young adults with overweight/obesity. International Journal of Obesity, 44(9), 1851-1858. https://doi.org/10.1038/s41366-020-0590-y.

Hossain, M. J., & Islam, M. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3). https://doi.org/10.1002/hsr2.2004.

Hwang, C. L., Lim, J., Yoo, J. K., Kim, H. K., Hwang, M. H., Handberg, E. M., Petersen, J. W., Holmer, B. J., Leey Casella, J. A., Cusi, K., & Christou, D. D. (2019). Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: A randomized controlled trial. Experimental gerontology, 116, 46–53. https://doi.org/10.1016/j.exger.2018.12.013.

International Diabetes Federation (IDF). (2023). Diabetes Facts & figures. International Diabetes Federation. https://idf.org/about-diabetes/diabetes-facts-figures/.

Jiang, L., Zhang, Y., Wang, Z., & Wang, Y. (2024). Acute interval running induces greater excess post-exercise oxygen consumption and lipid oxidation than isocaloric continuous running in men with obesity. Scientific reports, 14(1), 9178. https://doi.org/10.1038/s41598-024-59893-9.

Kakoti, B. B., Alom, S., Deka, K., & Halder, R. K. (2024). AMPK pathway: an emerging target to control diabetes mellitus and its related complications. Journal of diabetes and metabolic disorders, 23(1), 441–459. https://doi.org/10.1007/s40200-024-01420-8.

Lazić, A., Stanković, D., Trajković, N., & Cadenas-Sanchez, C. (2024). Effects of HIIT Interventions on Cardiorespiratory Fitness and Glycemic Parameters in Adults with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 10.1007/s40279-024-02059-4. Advance online publication. https://doi.org/10.1007/s40279-024-02059-4.

Lee, B. X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P. D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L. S., Waller, I., Gordon, R., Moloney-Kitts, M., Lee, G., & Gilligan, J. (2016). Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. Journal of public health policy, 37 Suppl 1, 13–31. https://doi.org/10.1057/s41271-016-0002-7.

Liu, J. X., Zhu, L., Li, P. J., Li, N., & Xu, Y. B. (2019). Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging clinical and experimental research, 31(5), 575–593. https://doi.org/10.1007/s40520-018-1012-z.

Liu, Y., Dong, G., Zhao, X., Huang, Z., Li, P., & Zhang, H. (2020). Post-exercise Effects and Long-Term Training Adaptations of Hormone Sensitive Lipase Lipolysis Induced by High-Intensity Interval Training in Adipose Tissue of Mice. Frontiers in physiology, 11, 535722. https://doi.org/10.3389/fphys.2020.535722.

Mahatme, S., K, V., Kumar, N., Rao, V., Kovela, R. K., & Sinha, M. K. (2022). Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Medicine and pharmacy reports, 95(2), 115–130. https://doi.org/10.15386/mpr-2201.

Maillard, F., Rousset, S., Pereira, B., Boirie, Y., Duclos, M., & Boisseau, N. (2018). High-intensity interval training is more effective than moderate-intensity continuous training in reducing abdominal fat mass in postmenopausal women with type 2 diabetes: A randomized crossover study. Diabetes & metabolism, 44(6), 516–517. https://doi.org/10.1016/j.diabet.2018.09.001.

Mateo-Gallego, R., Madinaveitia-Nisarre, L., Giné-Gonzalez, J., María Bea, A., Guerra-Torrecilla, L., Baila-Rueda, L., Perez-Calahorra, S., Civeira, F., & Lamiquiz-Moneo, I. (2022). The effects of high-intensity interval training on glucose metabolism, cardiorespiratory fitness and weight control in subjects with diabetes: Systematic review a meta-analysis. Diabetes research and clinical practice, 190, 109979. https://doi.org/10.1016/j.diabres.2022.109979.

Matsuura, S., Nagata, S., Shibazaki, K., Uchida, R., Imai, Y., Shibata, S., & Morita, H. (2024). Increased skeletal muscle mass index was involved in glycemic efficacy following diabetes treatment, and changes in fat mass index correlated with the changes in the lipid ratio in type 2 diabetes. Journal of diabetes and its complications, 38(4), 108717. https://doi.org/10.1016/j.jdiacomp.2024.108717.

Pot, G. K., Battjes-Fries, M. C., Patijn, O. N., Pijl, H., & Voshol, P. (2020). Lifestyle medicine for type 2 diabetes: Practice-based evidence for long-term efficacy of a multicomponent lifestyle intervention (Reverse Diabetes2 Now). BMJ Nutrition, Prevention & Health, 3(2), 188-195. https://doi.org/10.1136/bmjnph-2020-000081.

Pranoto, A., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Nindya, T. S., Lestari, B., & Halim, S. (2024). The role of long-term combination training in reducing and maintaining of body fat in obese young adult women. Retos, 53, 139–146. https://doi.org/10.47197/retos.v53.102460.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Putera, S. H. P., Setijono, H., Wiriawan, O., Nurhasan, Muhammad, H. N., Hariyanto, A., Sholikhah, A. M., & Pranoto, A. (2023). Positive Effects of Plyometric Training on Increasing Speed, Strength and Limb Muscles Power in Adolescent Males. Physical Education Theory and Methodology, 23(1), 42–48. https://doi.org/10.17309/tmfv.2023.1.06.

Raharjo, S., Pranoto, A., Rejeki, P. S., Harisman, A. S. M., Pamungkas, Y. P., & Andiana, O. (2021). Negative Correlation between Serum Brain-derived Neurotrophic Factor Levels and Obesity Predictor Markers and Inflammation Levels in Females with Obesity. Open Access Macedonian Journal of Medical Sciences, 9(B), 1021–1026. https://doi.org/10.3889/oamjms.2021.6840.

Rejeki, P.S., Pranoto, A., Prasetya, R.E., & Sugiharto, S. (2021). Irisin serum increasing pattern is higher at moderate-intensity continuous exercise than at moderate-intensity interval exercise in obese females. Comparative Exercise Physiology, 17(5), 475-484. https://doi.org/10.3920/CEP200050.

Rejeki, P. S., Pranoto, A., Widiatmaja, D. M., Utami, D. M., Izzatunnisa, N., Sugiharto, Lesmana, R., & Halim, S. (2024). Combined Aerobic Exercise with Intermittent Fasting Is Effective for Reducing mTOR and Bcl-2 Levels in Obese Females. Sports (Basel, Switzerland), 12(5), 116. https://doi.org/10.3390/sports12050116.

Saberi, S., Askaripour, M., Khaksari, M., Amin Rajizadeh, M., Abbas Bejeshk, M., Akhbari, M., Jafari, E., & Khoramipour, K. (2024). Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749.

Sherafati-Moghadam, M., Pahlavani, H. A., Daryanoosh, F., & Salesi, M. (2022). The effect of high-intensity interval training (HIIT) on protein expression in Flexor Hallucis Longus (FHL) and soleus (SOL) in rats with type 2 diabetes. Journal of diabetes and metabolic disorders, 21(2), 1499–1508. https://doi.org/10.1007/s40200-022-01091-3.

Shishira, K.B., Vaishali, K., Kadavigere, R., Sukumar, S., K N, S., Pullinger, S. A., & Bommasamudram, T. (2024). Effects of high-intensity interval training versus moderate-intensity continuous training on vascular function among individuals with overweight and obesity-a systematic review. International journal of obesity (2005), 10.1038/s41366-024-01586-4. Advance online publication. https://doi.org/10.1038/s41366-024-01586-4.

Sindorf, M. A. G., Germano, M. D., Dias, W. G., Batista, D. R., Braz, T. V., Moreno, M. A., & Lopes, C. R. (2021). Excess Post-Exercise Oxygen Consumption and Substrate Oxidation Following High-Intensity Interval Training: Effects of Recovery Manipulation. International journal of exercise science, 14(2), 1151–1165.

Spaulding, H. R., & Yan, Z. (2022). AMPK and the Adaptation to Exercise. Annual review of physiology, 84, 209–227. https://doi.org/10.1146/annurev-physiol-060721-095517.

Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not Enough. Journal of graduate medical education, 4(3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.

Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119.

Vázquez, L. A., Romera, I., & Escalada, J. (2023). Glycaemic Control and Weight Reduction: A Narrative Review of New Therapies for Type 2 Diabetes. Diabetes Therapy, 14(11), 1771-1784. https://doi.org/10.1007/s13300-023-01467-5.

Wang, X., Kang, J., Liu, Q., Tong, T., & Quan, H. (2020). Fighting Diabetes Mellitus: Pharmacological and Non-pharmacological Approaches. Current pharmaceutical design, 26(39), 4992–5001. https://doi.org/10.2174/1381612826666200728144200.

Wang, Y., Wang, S., Meng, X., & Zhou, H. (2024). Effect of high-intensity interval training and moderate-intensity continuous training on cardiovascular risk factors in adolescents: Systematic review and meta-analysis of randomized controlled trials. Physiology & behavior, 275, 114459. https://doi.org/10.1016/j.physbeh.2024.114459.

Wondmkun Y. T. (2020). Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, metabolic syndrome and obesity : targets and therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898.

Xu, B., Wu, Q., Yin, G., Lu, L., La, R., Zhang, Y., Alifu, J., Zhang, W., Guo, F., Ji, B., Abdu, F. A., & Che, W. (2024). Associations of cardiometabolic index with diabetic statuses and insulin resistance: the mediating role of inflammation-related indicators. BMC public health, 24(1), 2736. https://doi.org/10.1186/s12889-024-20048-0.

Yang, X., Sun, J., & Zhang, W. (2024). Global trends in burden of type 2 diabetes attributable to physical inactivity across 204 countries and territories, 1990-2019. Frontiers in Endocrinology, 15, 1343002. https://doi.org/10.3389/fendo.2024.1343002.

Zhu, L., & Li, N. (2019). Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: A systematic review and meta-analysis. Aging Clinical and Experimental Research, 31(5), 575-593. https://doi.org/10.1007/s40520-018-1012-z.

Descargas

Publicado

2024-11-20

Cómo citar

Suryo Putro, W. A., Mustamu, A. C., & Suwanto, W. (2024). El entrenamiento regular en bicicleta ergonómica de alta intensidad es eficaz para reducir el IMC, el porcentaje de grasa corporal y la HbA1c y mejorar la masa muscular en pacientes con diabetes tipo 2. Retos, 62, 966–973. https://doi.org/10.47197/retos.v62.110777

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas