Aplicaciones de la Máxima Oxidación de Grasas y FATmax en la evaluación del rendimiento deportivo en atletas-de resistencia-: una revisión narrativa (Applications of Maximum Fat Oxidation and FATmax in the evaluation of sports performance in endurance-athletes: a narrative review)

Autores/as

  • Martin Molinar Contreras
  • Aldo I. Perez Garcia
  • Arnulfo Ramos-Jiménez https://orcid.org/0000-0002-4347-6725
  • Rosa P. Hernández Torres
  • Isaac A. Chavez-Guevara

DOI:

https://doi.org/10.47197/retos.v47.95197

Palabras clave:

deporte, fisiología del ejercicio, alto rendimiento deportivo, metabolismo, entrenamiento físico

Resumen

El uso diferencial de sustratos energéticos (lípidos y carbohidratos) durante la competencia deportiva se ha propuesto como un factor determinante del rendimiento deportivo. Por lo tanto, la presente revisión tiene por objetivos: (i) describir la asociación de la máxima oxidación de grasas (MFO) y su correspondiente intensidad (FATmax) con indicadores del rendimiento deportivo en atletas de resistencia, (ii) reportar el fenotipo metabólico de atletas pertenecientes a diferentes disciplinas deportivas. Resultados: La FATmax y MFO están directamente asociadas entre sí, sin embargo,  solo la MFO esta positivamente asociada con el tiempo de carrera en atletas de triatlón, esquiadores profesionales a campo traviesa y corredores de ultramaraton. En dichas poblaciones, el máximo consumo de oxigeno (VO2max) muestra una correlación positiva con la MFO, mientras que la edad esta inversamente asociada a MFO. Tanto la FATmax como la MFO han sido estudiados en pocas disciplinas deportivas. Por otro lado, la MFO difiere entre atletas de distintas disciplinas deportivas, siendo superior en corredores de larga distancia y esquiadores profesionales vs. ciclistas (0.55±0.09 vs. 0.48±0.05 g∙min-1), a pesar de similitudes en el VO2max y la masa libre de grasa. Aunque la MFO reportada en atletas de balonmano, voleibol y baloncesto (0.59±0.24 g∙min-1), así como en futbolistas profesionales (0.69±0.15 g∙min-1), es superior a los valores observados en corredores de larga distancia y esquiadores de elite. Conclusión: La relación de la MFO y la FATmax con el rendimiento deportivo varía según la edad, disciplina deportiva y el sexo de los atletas, observándose un fenotipo metabólico particular para cada disciplina deportiva. Por lo tanto, además de medir el VO2max y la intensidad de trabajo correspondiente al umbral de lactato o segundo umbral ventilatorio se recomienda incorporar la MFO y FATmax en las evaluaciones fisiológicas de los atletas para optimizar su rendimiento físico.

Palabras clave: deporte, fisiología del ejercicio, alto rendimiento deportivo, metabolismo, entrenamiento físico.

Abstract: The differential use of energy substrates (lipids and carbohydrates) during sports competitions has been proposed to determine sports performance. Therefore, this review has the objectives: (i) describe the association of maximum oxidation of fats (MFO) and its corresponding intensity (Fatmax) with indicators of sports performance in resistance athletes, (ii) report the Metabolic athlete phenotype belonging to different sports disciplines. Both FATmax and MFO have been studied in a few sports disciplines. Results: Fatmax and MFO are directly associated with each other; however, only the MFO was positively associated with the career time in triathlon athletes, professional skiers with a mischievous field, and ultramarathon runners. In these populations, the maximum oxygen consumption (VO2max) positively correlates with the MFO, while age is inversely associated with MFO. Although the MFO reported in handball, volleyball, and basketball athletes (0.59±0.24 g∙min-1), as well as in professional players (0.69±0.15 g∙min-1), MFO is superior to the values observed in long-distance corridors and elite skiers. On the other hand, the MFO differs between athletes from different sports disciplines, being superior in long-distance corridors and professional skiers vs. cyclists (0.55±0.09 vs. 0.48±0.05 g∙min-1), despite similarities in the VO2max and fat-free mass. Conclusion: The relationship of the MFO and the Fatmax with sports performance varies according to age, sports discipline, and the sex of athletes, observing a particular metabolic phenotype for each sports discipline. Therefore, in addition to measuring the VO2max and the work intensity corresponding to the lactate threshold or second ventilatory threshold, it is recommended to incorporate the MFO and Fatmax in the physiological evaluations of the athletes to optimize their physical performance.

Keywords: sport, exercise physiology, high sports performance, metabolism, physical training.

Citas

Achten, J., & Jeukendrup, A. E. (2004). Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. International Journal of Sports Medicine, 25(1), 32–37. https://doi.org/10.1055/s-2003-45231

Amaro-Gahete, F. J., Jurado-Fasoli, L., Triviño, A. R., Sanchez-Delgado, G., De-la-O, A., Helge, J. W., & Ruiz, J. R. (2019). Diurnal Variation of Maximal Fat-Oxidation Rate in Trained Male Athletes. International Journal of Sports Physi-ology and Performance, 14(8), 1140–1146. https://doi.org/10.1123/ijspp.2018-0854

Ball D. (2015). Metabolic and endocrine response to exercise: sympathoadrenal integration with skeletal muscle. Journal of Endocrinology, 224(2):R79-95. doi: 10.1530/JOE-14-0408.

Chávez-Guevara, I. A., Hernández-Torres, R. P., González-Rodríguez, E., Ramos-Jiménez, A., & Amaro-Gahete, F. J. (2022). Biomarkers and genetic polymorphisms associated with maximal fat oxidation during physical exercise: implica-tions for metabolic health and sports performance. European Journal of Applied Physiology, 10.1007/s00421-022-04936-0. Advance online publication. https://doi.org/10.1007/s00421-022-04936-0

Chávez-Guevara, I. A., Hernández-Torres, R. P., Trejo-Trejo, M., Moreno-Brito, V., González-Rodríguez, E., & Ramos-Jiménez, A. (2022). Association Among Different Aerobic Threshold Markers and FATmax in Men with Obesity. Re-search Quarterly for Exercise and Sport, 1–8. Advance online publication. https://doi.org/10.1080/02701367.2022.2065235

Che, K., Qiu, J., Yi, L., Zou, M., Li, Z., Carr, A., ... & Benardot, D. (2021). Effects of a short-term “fat adaptation with carbohydrate restoration” diet on metabolic responses and exercise performance in well-trained run-ners. Nutrients, 13(3), 1033.

Dandanell, S., Meinild-Lundby, A. K., Andersen, A. B., Lang, P. F., Oberholzer, L., Keiser, S., Robach, P., Larsen, S., Rønnestad, B. R., & Lundby, C. (2018). Determinants of maximal whole-body fat oxidation in elite cross-country ski-ers: Role of skeletal muscle mitochondria. Scandinavian Journal of Medicine & Science in Sports, 28(12), 2494–2504. https://doi.org/10.1111/sms.13298

Davies, C. T., Few, J., Foster, K. G., & Sargeant, A. J. (1974). Plasma catecholamine concentration during dynamic exer-cise involving different muscle groups. European Journal of Applied Physiology and Occupational Physiology, 32(3), 195–206. https://doi.org/10.1007/BF00423215

Dellal A, da Silva CD, Hill-Haas S, Wong del P, Natali AJ, De Lima JR, Bara Filho MG, Marins JJ, Garcia ES, Chamari K. Heart rate monitoring in soccer: interest and limits during competitive match play and training, practical application. The Journal of Strength and Conditioning Research. 2012 Oct;26(10):2890-906. doi:

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism, 17(2), 162–184. https://doi.org/10.1016/j.cmet.2012.12.012

Filipovic, M., Munten, S., Herzig, K. H., & Gagnon, D. D. (2021). Maximal Fat Oxidation: Comparison between Tread-mill, Elliptical and Rowing Exercises. Journal of Sports Science & Medicine, 20(1), 170–178. https://doi.org/10.52082/jssm.2021.170

Fisher, J. P., & Secher, N. H. (2019). Regulation of heart rate and blood pressure during exercise in humans. In Muscle and Exercise Physiology (pp. 541-560). Academic Press. https://doi.org/10.1016/B978-0-12-814593-7.00024-4

Fletcher, G., Eves, F. F., Glover, E. I., Robinson, S. L., Vernooij, C. A., Thompson, J. L., & Wallis, G. A. (2017). Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. The American Journal of Clinical Nutrition, 105(4), 864-872. https://doi.org/10.3945/ajcn.116.133520

Frandsen, J., Vest, S. D., Ritz, C., Larsen, S., Dela, F., & Helge, J. W. (2019). Plasma free fatty acid concentration is closely tied to whole body peak fat oxidation rate during repeated exercise. Journal of Applied Physiology 126(6), 1563–1571. https://doi.org/10.1152/japplphysiol.00995.2018

Frandsen, J., Vest, S., Larsen, S., Dela, F., & Helge, J. (2017). Maximal fat oxidation is related to performance in an Iron-man triathlon. International Journal of Sports Medicine, 38(13), 975-982. https://doi.org/10.1055/s-0043-117178

Galbo, H., Holst, J. J., & Christensen, N. J. (1975). Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. Journal of Applied Physiology, 38(1), 70–76. https://doi.org/10.1152/jappl.1975.38.1.70

González-Haro, C., Galilea, PA, González-de-Suso, JM, Drobnic, F., & Escanero, JF (2007). Maximal lipidic power in high competitive level triathletes and cyclists. British Journal of Sports Medicine, 41(1), 23–28. https://doi.org/10.1136/bjsm.2006.029603

Hackney A. C. (2006). Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Ex-pert review of endocrinology & metabolism, 1(6), 783–792. https://doi.org/10.1586/17446651.1.6.783

Hansen, M. T., Rømer, T., Frandsen, J., Larsen, S., Dela, F., & Helge, J. W. (2019). Determination and validation of peak fat oxidation in endurance-trained men using an upper body graded exercise test. Scandinavian Journal of Medicine & Science in Sports, 29(11), 1677–1690. https://doi.org/10.1111/sms.13519

Haralambie G. (1982). Enzyme activities in skeletal muscle of 13-15 years old adolescents. Bulletin Europeen de Physiopathol-ogie Respiratoire, 18(1), 65–74.

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4

Hornery, D. J., Farrow, D., Mujika, I., & Young, W. (2007). An integrated physiological and performance profile of pro-fessional tennis. British Journal of Sports Medicine, 41(8), 531–536. https://doi.org/10.1136/bjsm.2006.031351

Horton, T. J., Dow, S., Armstrong, M., & Donahoo, W. T. (2009). Greater systemic lipolysis in women compared with men during moderate-dose infusion of epinephrine and/or norepinephrine. Journal of Applied Physiology, 107(1), 200–210. https://doi.org/10.1152/japplphysiol.90812.2008

Jeukendrup A. E. (2002). Regulation of fat metabolism in skeletal muscle. Annals of the New York Academy of Sciences, 967, 217–235. https://doi.org/10.1111/j.1749-6632.2002.tb04278.x

Kaczor, J. J., Ziolkowski, W., Popinigis, J., & Tarnopolsky, M. A. (2005). Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatric Research, 57(3), 331–335. https://doi.org/10.1203/01.PDR.0000150799.77094.DE

Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2012). Physiology of Sport and Exercise, 8th ed. Human Kinetics (USA).

Lanzi, S., Codecasa, F., Cornacchia, M., Maestrini, S., Salvadori, A., Brunani, A., & Malatesta, D. (2014). Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PloS one, 9(2), e88707. https://doi.org/10.1371/journal.pone.0088707

MacIntosh, B. R., Murias, J. M., Keir, D. A., & Weir, J. M. (2021). What is moderate to vigorous exercise intensity? Fron-tiers in Physiology, 12:682233. https://doi.org/10.3389/fphys.2021.682233

MacLaren, D., & Morton, J. (2012). Biochemistry for Sport and Exercise Metabolism. Wiley-Blackwell (USA).

Martinez-Navarro, I., Montoya-Vieco, A., Collado, E., Hernando, B., & Hernando, C. (2020). Ultra-trail performance is differently predicted by endurance variables in men and women. International Journal of Sports Medicine. https://doi.org/10.1055/a-1255-3083

Mittendorfer, B., Horowitz, J. F., & Klein, S. (2002). Effect of gender on lipid kinetics during endurance exercise of moder-ate intensity in untrained subjects. American Journal of Physiology, Endocrinology and Metabolism, 283(1), E58–E65. https://doi.org/10.1152/ajpendo.00504.2001

Mueller Nikolovski, Z., Barbaresi, S., Cable, T., & Peric, R. (2020). Evaluating the influence of differences in methodologi-cal approach on metabolic thresholds and fat oxidation points relationship. European Journal of Sport Science, 21(1), 61–68.

Ørtenblad, N., & Nielsen, J. (2015). Muscle glycogen and cell function--Location, location, location. Scandinavian Journal of Medicine & Science in Sports, 25(Suppl 4), 34–40. https://doi.org/10.1111/sms.1259

Peric, R., Meucci, M., Bourdon, P. C., & Nikolovski, Z. (2018). Does the aerobic threshold correlate with the maximal fat oxidation rate in short stage treadmill tests?. The Journal of Sports Medicine and Physical Fitness, 58(10), 1412–1417. https://doi.org/10.23736/S0022-4707.17.07555-7

Peric R, Nikolovski Z, Meucci M, Tadger P, Ferri Marini C, Amaro-Gahete FJ. A Systematic Review and Meta-Analysis on the Association and Differences between Aerobic Threshold and Point of Optimal Fat Oxidation. Int J Environ Res Pub-lic Health. 2022;19(11):6479. Published 2022 May 26. doi:10.3390/ijerph19116479

Purdom, T., Kravitz, L., Dokladny, K., & Mermier, C. (2018). Understanding the factors that effect maximal fat oxidation. Journal of the International Society of Sports Nutrition, 15(1), 1–10. https://doi.org/10.1186/s12970-018-0207-1

Randell, R. K., Carter, J. M., Jeukendrup, A. E., Lizarraga, M. A., Yanguas, J. I., & Rollo, I. (2019). Fat Oxidation Rates in Professional Soccer Players. Medicine and Science in Sports and Exercise, 51(8), 1677–1683. https://doi.org/10.1249/MSS.0000000000001973

Randell, R. K., Rollo, I., Roberts, T. J., Dalrymple, K. J., Jeukendrup, A. E., Carter, J. M. (2017). Maximal Fat Oxidation Rates in an Athletic Population. Medicine & Science in Sports & Exercise, 49(1), 133–140. https://doi.org/10.1249/mss.0000000000001084

Riddell, M. C., Jamnik, V. K., Iscoe, K. E., Timmons, B. W., & Gledhill, N. (2008). Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. Journal of Applied Physi-ology, 105(2), 742–748. https://doi.org/10.1152/japplphysiol.01256.2007

Rodríguez-Zamora, L., Iglesias, X., Barrero, A., Chaverri, D., Erola, P., & Rodríguez, F. A. (2012). Physiological re-sponses in relation to performance during competition in elite synchronized swimmers. PloS one, 7(11), e49098. https://doi.org/10.1371/journal.pone.0049098

Rømer, T., Thunestvedt Hansen, M., Frandsen, J., Larsen, S., Dela, F. y Wulff Helge, J. (2020). The relationship between peak fat oxidation and prolonged endurance exercise performance double-Poling. Scandinavian Journal of Medicine & Sci-ence in Sports, 30(11), 2044-2056. https://doi.org/10.1111/sms.13769

Sahlin, K. (2009). Control of lipid oxidation at the mitochondrial level. Applied Physiology, Nutrition, & Metabolism, 34(3), 382–388. https://doi.org/10.1139/h09-027

San-Millán, I., Brooks, G. A. (2018). Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports medi-cine 48(2), 467–479. https://doi.org/10.1007/s40279-017-0751-x

Schwindling, S., Scharhag-Rosenberger, F., Kindermann, W., & Meyer, T. (2014). Limited benefit of Fatmax-test to derive training prescriptions. International Journal of Sports Medicine, 35(4), 280–285. https://doi.org/10.1055/s-0033-1349106

Soria, M., Ansón, M., Lou-Bonafonte, J. M., Andrés-Otero, M. J., Puente, J. J., & Escanero, J. (2020). Fat Oxidation Rate as a Function of Plasma Lipid and Hormone Response in Endurance Athletes. Journal of Strength & Conditioning Research, 34(1), 104–113. https://doi.org/10.1519/JSC.0000000000003034

Spriet, L. L. (2014). New Insights into the Interaction of Carbohydrate and Fat Metabolism During Exercise. Sports Medicine, 44(S1), 87–96. https://doi.org/10.1007/s40279-014-0154-1

Starritt, E. C., Howlett, R. A., Heigenhauser, G. J., & Spriet, L. L. (2000). Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. American journal of physiology. Endocrinology and metabolism, 278(3), E462–E468. https://doi.org/10.1152/ajpendo.2000.278.3.E462

Tolfrey, K., Jeukendrup, A. E., & Batterham, A. M. (2010). Group- and individual-level coincidence of the 'Fatmax' and lactate accumulation in adolescents. European Journal of Applied Physiology, 109(6), 1145–1153. https://doi.org/10.1007/s00421-010-1453-3

Torres-Ronda, L., Ric, A., Llabres-Torres, I., de Las Heras, B., & Schelling I Del Alcazar, X. (2016). Position-Dependent Cardiovascular Response and Time-Motion Analysis During Training Drills and Friendly Matches in Elite Male Basket-ball Players. Journal of Strength and Conditioning Research, 30(1), 60–70. https://doi.org/10.1519/JSC.0000000000001043

Trefts, E., Williams, A. S., & Wasserman, D. H. (2015). Exercise and the Regulation of Hepatic Metabolism. Progress in Molecular Biology and Translational Science, 135, 203–225. https://doi.org/10.1016/bs.pmbts.2015.07.010

Tsiloulis, T., & Watt, M. J. (2015). Exercise and the regulation of adipose tissue metabolism. Progress in Molecular Biology and Translational Science, 135, 175-201. doi:10.1016/bs.pmbts.2015.06.016.

Vest, S., Frandsen, J., Larsen, S., Dela, F., & Helge, J. (2018). Peak fat oxidation is not independently related to Ironman performance in women. International Journal of Sports Medicine, 39(12), 916-923. https://doi.org/10.1055/a-0660-0031

Zurbuchen, A., Lanzi, S., Voirol, L., Trindade, C. B., Gojanovic, B., Kayser, B., Bourdillon, N., Chenevière, X., & Mala-testa, D. (2020). Fat Oxidation Kinetics Is Related to Muscle Deoxygenation Kinetics During Exercise. Frontiers in Phy-siology, 11, 571. https://doi.org/10.3389/fphys.2020.00571

Descargas

Publicado

2023-01-02

Cómo citar

Molinar Contreras, M. ., Perez Garcia, A. I. ., Ramos-Jiménez, A., Hernández Torres, R. P., & Chavez-Guevara, I. A. . (2023). Aplicaciones de la Máxima Oxidación de Grasas y FATmax en la evaluación del rendimiento deportivo en atletas-de resistencia-: una revisión narrativa (Applications of Maximum Fat Oxidation and FATmax in the evaluation of sports performance in endurance-athletes: a narrative review). Retos, 47, 806–813. https://doi.org/10.47197/retos.v47.95197

Número

Sección

Revisiones teóricas, sistemáticas y/o metaanálisis

Artículos más leídos del mismo autor/a