Análisis de electromiografía en la sentadilla libre con barra: Revisión sistemática (Electromyography analysis of the free barbell squat: A systematic review)

Autores/as

  • Víctor Hugo López-Trujillo Universidad Autónoma de Chihuahua
  • Karla Dolores Bustamante-Valles Centro de Investigación en Bioingenieria
  • Ramón Candia-Luján Universidad Autónoma de Chihuahua
  • Raul Josue Najera Longoria Universidad Autonoma de chihuahua

DOI:

https://doi.org/10.47197/retos.v45i0.87246

Palabras clave:

Entrenamiento deportivo, fuerza muscular, ejercicio físico, biomecánica, contracción muscular, 1RM, (Sport training, muscular strength, physical exercise, biomechanics, muscle contraction, 1RM)

Resumen

 

Objetivo: Realizar una revisión sistemática de literatura que evalúa la activación muscular por electromiografía (EMG) en sentadilla libre con barra (SLB), así como cambios producidos por factores cinéticos y cinemáticos. Métodos: Se utilizaron los lineamientos de la declaración PRISMA y de calidad metodológica de la declaración STROBE. Se incluyeron artículos originales encontrados en bases de datos Scopus, PubMed, Scielo y Cochrane Central Register of Controlled Trials (CENTRAL). Se encontraron 1889 artículos de los cuales debido a los criterios: sujetos con experiencia previa en entrenamiento resistido que midieran la ejecución de la SLB y utilización de EMG. Finalmente se utilizaron 18 artículos para el análisis. Resultados: La evidencia posiciona al cuádriceps femoral y el vasto medial como el grupo muscular y el músculo con mayor participación en la SLB. La actividad muscular en la SLB puede ser afectada por la carga de trabajo, la velocidad de ejecución, el tipo de resistencia y el rango de movimiento. Existe una tendencia a mayor compromiso muscular en la medida que aumenta la carga o la velocidad de ascenso, sin embargo, el aumento de la carga tiende a afectar de forma negativa a la velocidad. Conclusiones: Las cargas submáximas parecen generar activaciones musculares similares al 1RM, con el aliciente de menor riesgo de lesión que las cargas máximas. Mayores estudios con criterios metodológicos unificados son requeridos para identificar el punto óptimo de activación muscular en base a la carga de trabajo. 

Abstract. Purpose: To conduct a systematic review of studies that evaluate electromyography muscle activation in the free barbell back squat (BS), and the changes produced by the effect of kinetic and kinematic factors. Methods: This study was conducted according to The PRISMA declaration and the STROBE guidelines to assess the methodological quality. Databases included were Scopus, PubMed, Scielo y Cochrane Central Register of Controlled Trials (CENTRAL). A total of 1889 original articles were selected using the inclusion criteria as follows: subjects previously experienced in resistance training including EMG assesment during the execution of the BS. The final selection consisted of 18 articles. Results: The evidence suggest to the quadriceps femoris and vastus medialis as the muscle group and the muscle with the greatest participation in BS. Muscle activity in BS can be affected by load, speed of execution, resistance type, and range of motion. There is a relationship between high muscle activity and increased load or velocity in the lift back up phase, however, increased load tends to negatively affect velocity in squat performance. Conclusions: Submaximal loads seem to produce similar muscle activation to the 1RM, with the incentive of a lower risk of injury compared to the maximum loads. More studies with unified methodological criteria are required to identify the optimal muscle activation based on the load.

Citas

Andersen, V., Fimland, M. S., Kolnes, K. M., Jensen, S., Laume, M., & Saeterbakken, A. H. (2016). Electromyographic Comparison of Squats Using Constant or Variable Resistance. Journal of Strength and Conditioning Research, 30(12), 3456–3463.

Andrews, J. G. (1987). The functional roles of the hamstrings and quadriceps during cycling: Lombard’s Paradox revisited. Journal of Biomechanics, 20(6), 565–575. https://doi.org/10.1016/0021-9290(87)90278-8

Caterisano, A., Raymond, F., Pellinger, T. K., Lewis, V. C., Booth, W., Science, E., & Highway, P. (2002). The Effect of Back Squat Depth on the EMG Activity of 4 Superficial Hip and Thigh Musles. 16(3), 428–432. https://doi.org/10.1519/1533-4287(2002)016<0428:TEOBSD>2.0.CO;2

Clark, D., Lambert, M. I., & Hunter, A. M. (2016). Reliability of Trunk Muscle Electromyography in the Loaded Back Squat Exercise. International Journal of Sports Medicine, 37(6), 448–456. https://doi.org/10.1055/s-0035-1569366

Clark, D., Lambert, M., & Hunter, A. (2012). Muscle activation in the loaded free barbell squat: A Brief Review. Journal of Strength & Conditioning Research, 26(4), 32. https://doi.org/10.1519/JSC.0b013e31822d533d

Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., & Cronin, J. (2016). A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyography amplitude in the parallel, full, and front squat variations in resistance-trained females. Journal of Applied Biomechanics, 32(1), 16–22. https://doi.org/10.1123/jab.2015-0113

Da Silva, J. J., Schoenfeld, B. J., Marchetti, P. N., Pecoraro, S. L., Greve, J. M. D., & Marchetti, P. H. (2017). Muscle Activation Differs Between Partial and Full Back Squat Exercise with External Load Equated. Journal of Strength and Conditioning Research, 31(6), 1688–1693. https://doi.org/10.1519/JSC.0000000000001713

Del Vecchio, L., Daewoud, H., & Green, S. (2018). The health and performance benefits of the squat, deadlift, and bench press. MOJ Yoga & Physical Therapy, 3(2), 40–47. https://doi.org/10.15406/mojypt.2018.03.00042

Delgado, J., Drinkwater, E. J., Banyard, H. G., Haff, G. G., & Nosaka, K. (2019). Comparison Between Back Squat, Romanian Deadlift, and Barbell Hip Thrust for Leg and Hip Muscle Activities During Hip Extension. Journal of Strength and Conditioning Research, 33(10), 2595–2601. https://doi.org/10.1519/JSC.0000000000003290

Ertelt, T., & Blickhan, R. (2008). Estimation for Lombard´s paradox of human M. gastrocnemius. 102(1), 2008.

Escamilla, R. F. (2001). Knee biomechanics of the dynamic squat exercise. Medicine and Science in Sports and Exercise, 33(1), 127–141. https://doi.org/10.1097/00005768-200101000-00020

Evans, T. W., McLester, C. N., Howard, J. S., McLester, J. R., & Calloway, J. P. (2019). Comparison of Muscle Activation Between Back Squats and Belt Squats. Journal of Strength and Conditioning Research, 33, S52–S59. https://doi.org/10.1519/JSC.0000000000002052

Ferrer, M. (2007). Efectos de dos métodos de entrenamiento de fuerza sobre el Índice de Bosco en jugadoras de balonmano de División de Honor. Retos. Nuevas Tendencias En Educación Física, Deporte y Recreación, 11, 33–36. https://doi.org/https://doi.org/10.47197/retos.v0i11.35044

Florimond, V. (2010). Basics of Surface Electromyography. Applied to Physical Rehabilitation and Biomechanics. https://doi.org/10.1021/ed043pa901.1

Gomes, W. A., Brown, L. E., Soares, E. G., Da Silva, J. J., Silva, F. H. D. D. O., Serpa, É. P., Corrêa, D. A., Vilela Junior, G. de B., Lopes, C. R., & Marchetti, P. H. (2015). Kinematic and sEMG analysis of the back squat at different intensities with and without knee wraps. Journal of Strength and Conditioning Research, 29(9), 2482–2487. https://doi.org/10.1519/JSC.0000000000000922

González-García, J., Morencos, E., Balsalobre-Fernández, C., Cuéllar-Rayo, Á., & Romero-Moraleda, B. (2019). Effects of 7-Week Hip Thrust Versus Back Squat Resistance Training on Performance in Adolescent Female Soccer Players. Sports, 7(4), 80. https://doi.org/10.3390/sports7040080

Gulick, D. T., Fagnani, J. A., & Gulick, C. N. (2015). Comparison of muscle activation of hip belt squat and barbell back squat techniques. Isokinetics and Exercise Science, 23(2), 101–108. https://doi.org/10.3233/IES-150570

Halaki, M., & Gi, K. (2012). Normalization of EMG Signals: To Normalize or Not to Normalize and What to Normalize to? Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, October. https://doi.org/10.5772/49957

Hartmann, H., Wirth, K., & Klusemann, M. (2013). Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Medicine, 43(10), 993–1008. https://doi.org/10.1007/s40279-013-0073-6

Joseph, L., Reilly, J., Sweezey, K., Waugh, R., Carlson, L. A., & Lawrence, M. A. (2020). Activity of Trunk and Lower Extremity Musculature: Comparison Between Parallel Back Squats and Belt Squats. Journal of Human Kinetics, 72(1), 223–228. https://doi.org/10.2478/hukin-2019-0126

Korak, J. A., Paquette, M. R., Fuller, D. K., Caputo, J. L., & Coons, J. M. (2018). Muscle Activation Patterns of Lower-Body Musculature Among 3 Traditional Lower-Body Exercises in Trained Women. Journal of Strength and Conditioning Research, 32(10), 2770–2775. https://doi.org/10.1519/JSC.0000000000002513

Lawrence, M. A., & Carlson, L. A. (2015). Effects of an Unstable Load on Force and Muscle Activation During a Parallel Back Squat. Journal of Strength and Conditioning Research, 29(10), 2949–2953. https://doi.org/10.1519/JSC.0000000000000955

McCaw, S. T., & Melrose, D. R. (1999). Stance width and bar load effects on leg muscle activity during the parallel squat. Medicine and Science in Sports and Exercise, 31(3), 428–436. https://doi.org/10.1097/00005768-199903000-00012

Mehls, K., Grubbs, B., Jin, Y., & Coons, J. (2020). Electromyography Comparison of Sex Differences During the Back Squat. Journal of Strength and Conditioning Research, February, 1–4. https://doi.org/10.1519/jsc.0000000000003469

Mina, M. A., Blazevich, A. J., Giakas, G., & Kay, A. D. (2014). Influence of variable resistance loading on subsequent free weight maximal back squat performance. Journal of Strength and Conditioning Research, 28(10), 2988–2995. https://doi.org/10.1519/JSC.0000000000000471

Mina, M. A., Blazevich, A. J., Giakas, G., Seitz, L. B., & Kay, A. D. (2016). Chain-loaded variable resistance warm-up improves free-weight maximal back squat performance. European Journal of Sport Science, 16(8), 932–939. https://doi.org/10.1080/17461391.2016.1199740

Myer, G., Kushner, A., Brent, J., Schoenfeld, B., Hugentobler, R., Vermeil, A., Harbin, J., & McGill, S. (2014). The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond J, 36(6), 4–27. https://doi.org/10.1519/SSC.0000000000000103

Paoli, A., Giuseppe, M., & Petrone, N. (2009). The Effect of Stance Width on the Electromiographical Activity of Eight Superficial Thigh Muscles During Back Squat With Different Bar Loads. Journal of Strength and Conditioning Research, 23(1), 246–250. https://doi.org/10.1519/jsc.0b013e3181876811

Prilutsky, B. I., & Zatsiorsky, V. M. (1994). Tendon action of two-joint muscles: Transfer of mechanical energy between joints during jumping, landing, and running. Journal of Biomechanics, 27(1), 25–34. https://doi.org/10.1016/0021-9290(94)90029-9

Raya González, J., Gómez Piqueras, P., & Sánchez Sánchez, J. (2018). Aplicación de un programa de fuerza con carga excéntrica en la readaptación de una lesión del ligamento lateral interno de rodilla. Retos: Nuevas Tendencias En Educación Física, Deporte y Recreación., 2041(33), 157–161. https://doi.org/https://doi.org/10.47197/retos.v0i33.55911

Rojas-Quinchavil, G., Venegas-Jeldrez, P., Valencia, O., Guzmán-Venegas, R., Araneda, O. F., de la Rosa, F. J. B., & Flores-Leon, A. F. (2021). Hip and thigh muscular activity in professional soccer players during an isometric squat with and without controlled hip contraction. Retos, 2041(39), 697–704. https://doi.org/10.47197/retos.v0i39.82024

Saeterbakken, A. H., Andersen, V., & Van Den Tillaar, R. (2016). Comparison of Kinematics and Muscle Activation in Free-Weight Back Squat with and Without Elastic Bands. Journal of Strength and Conditioning Research, 30(4), 945–952. https://doi.org/10.1519/JSC.0000000000001178

Schoenfeld, B. J. (2010). Squatting kinematics and kinetics and their application to exercise performance. Journal of Strength and Conditioning Research, 24(12), 3497–3506. https://doi.org/10.1519/JSC.0b013e3181bac2d7

Van den Tillaar, R., Andersen, V., & Saeterbakken, A. H. (2019). Comparison of muscle activation and kinematics during free-weight back squats with different loads. PLoS ONE, 14(5), 1–13. https://doi.org/10.1371/journal.pone.0217044

Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., & Vandenbroucke, J. P. (2008). Declaración de la iniciativa STROBE (Strengthening the Reporting of Observational Studies in Epidemiology): Directrices para la comunicación de estudios observacionales. Revista Española de Salud Pública, 82(3), 251–259. https://doi.org/10.1157/13119325

Yavuz, H., & Erdag, D. (2017). Kinematic and Electromyographic Activity Changes during Back Squat with Submaximal and Maximal Loading. Applied Bionics and Biomechanics, 2017(Vl). https://doi.org/10.1155/2017/9084725

Yavuz, H., Erdag, D., Amca, A. M., & Aritan, S. (2015). Kinematic and EMG activities during front and back squat variations in maximum loads. Journal of Sports Sciences, 33(10), 1058–1066. https://doi.org/10.1080/02640414.2014.984240

Descargas

Publicado

2022-06-21

Cómo citar

López-Trujillo, V. H., Bustamante-Valles, K. D., Candia-Luján, R., & Najera Longoria, R. J. (2022). Análisis de electromiografía en la sentadilla libre con barra: Revisión sistemática (Electromyography analysis of the free barbell squat: A systematic review). Retos, 45, 611–621. https://doi.org/10.47197/retos.v45i0.87246

Número

Sección

Revisiones teóricas, sistemáticas y/o metaanálisis

Artículos más leídos del mismo autor/a