Concepto fisiológico del entrenamiento pliométrico para mejorar la aptitud física de los jugadores de baloncesto: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.47197/retos.v66.113684

Palabras clave:

Entrenamiento pliométrico, ejercicio físico, aptitud física, baloncesto

Resumen

Antecedentes: Es necesario aumentar la capacidad física de los jugadores de baloncesto para lograr sus objetivos. Una buena condición física está estrechamente relacionada con el rendimiento físico resultante. El ejercicio pliométrico es un ejercicio para desarrollar la velocidad y la fuerza (potencia) utilizando el propio peso corporal.

Objetivo: El objetivo de este estudio fue observar cómo el entrenamiento pliométrico (PT) afectaba el rendimiento atlético de los jugadores de baloncesto. También proporciona una base teórica para la aplicación del entrenamiento pliométrico (PT) en el baloncesto.

Materiales y métodos: Science Direct, Web of Science y Pubmed se encontraban entre las bases de datos bibliográficas que buscamos para esta investigación de revisión sistemática. Se encontraron artículos que abordaban el baloncesto, el entrenamiento pliométrico y la aptitud física que se publicaron en los cinco años anteriores. Se encontró un total de 238 publicaciones utilizando las bases de datos Web of Science, Pubmed y Science Direct. Se eligieron y examinaron diez artículos que cumplían los criterios de inclusión para esta revisión sistemática. En este estudio se utilizaron los elementos de informe preferidos para revisiones sistemáticas y metaanálisis (PRISMA) para evaluar los procedimientos operativos estándar. Resultados. Se ha demostrado que el entrenamiento pliométrico mejora la condición física de los jugadores de baloncesto, según una revisión sistemática. Se ha demostrado que el entrenamiento pliométrico mejora en gran medida el acondicionamiento físico de los jugadores de baloncesto.

Results: Plyometric training has been shown to improve basketball players' physical fitness, according to a systematic review. It has been demonstrated that plyometric training greatly improves basketball players' physical conditioning.

Conclusiones: Se ha demostrado claramente que el entrenamiento pliométrico aumenta la condición física de los jugadores de baloncesto. Por lo que puede ser una recomendación para aplicar como menú de entrenamiento para los atletas de baloncesto para apoyar el rendimiento.

Citas

Ahmad, S. S., Ahmad, K., Lee, E. J., Lee, Y. H., & Choi, I. (2020). Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells, 9(8), 1–15. https://doi.org/10.3390/cells9081773

Aksović, N., Berić, D., Kocić, M., Jakovljević, S., & Milanović, F. (2020). Plyometric Training and Sprint Abilities of Young Basketball Players. Facta Universitatis, Series: Physical Education and Sport, December, 539. https://doi.org/10.22190/fupes190315048a

Anversha, A. T., Ramalingam, V., Kumari, J. P. S. P., & Sugumaran, S. V. (2024). Impact of plyometric training on agility, sprint and vertical jump functional performance in junior level basketball players. Journal of Physical Education and Sport, 24(3), 638–648. https://doi.org/10.7752/jpes.2024.03076

Ascenzi, F., Barberi, L., Dobrowolny, G., Villa Nova Bacurau, A., Nicoletti, C., Rizzuto, E., Rosenthal, N., Scicchitano, B. M., & Musarò, A. (2019). Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell, 18(3), 1–11. https://doi.org/10.1111/acel.12954

Ayubi, N., Wibawa, J. C., Aljunaid, M., Dafun, P. B., & Ming, J. W. (2024). The Role of Insulin-Like Growth Factor (IGF-1) Signaling During Physical Exercise: A Systematic Review. Al-Kindy College Medical Journal, 20(3), 163–167. https://doi.org/10.47723/frgdrz94

Bedoya, A. A., Miltenberger, M. R., & Lopez, R. M. (2015). Plyometric Training Effects on Athletic Performance in Youth Soccer Athletes: A Systematic Review. Journal of Strength and Conditioning Research, 29(8), 2351–2360. https://doi.org/10.1519/JSC.0000000000000877

Buğa, S., & Gencer, Y. G. (2022). The Effect of Plyometric Training Performed on Different Surfaces on Some Performance Parameters. Progress in Nutrition, 24, 1–9. https://doi.org/10.23751/pn.v24iS1.13014

Cherni, Y., Hammami, M., Jelid, M. C., Aloui, G., Suzuki, K., Shephard, R. J., & Chelly, M. S. (2021). Neuromuscular Adaptations and Enhancement of Physical Performance in Female Basketball Players After 8 Weeks of Plyometric Training. Frontiers in Physiology, 11(January). https://doi.org/10.3389/fphys.2020.588787

Cieślicka, M., Sobko, I., Ulaeva, L., Ishenko, A., Shepelenko, T., Tamozhanska, G., & Bugayets, N. (2019). Improving the protective technique of 13-14-year-old basketball players using rubber bands and unstable platforms. Journal of Physical Education and Sport, 19(3), 903–911. https://doi.org/10.7752/jpes.2019.s3130

Davies, G., Riemann, B. L., & Manske, R. (2015). Current Concepts of Plyometric Exercise. International Journal of Sports Physical Therapy, 10(6), 760–786. http://www.ncbi.nlm.nih.gov/pubmed/26618058%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4637913

Demir, M. E., & Dağlıoğlu, Ö. (2022). the Effect of Plyometric Training Program on Physical Performance in Basketball Players. European Journal of Physical Education and Sport Science, 9(3), 86–96. https://doi.org/10.46827/ejpe.v9i3.4608

Feng, L., Li, B., Xi, Y., Cai, M., & Tian, Z. (2022). Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. American Journal of Physiology - Cell Physiology, 322(2), C164–C176. https://doi.org/10.1152/ajpcell.00344.2021

Ferraz, R., Marques, M. C., Branquinho, L., & Marinho, D. A. (2021). Effects of applying a training program on basketball shooting in young players. Journal of Human Sport and Exercise, 16(Proc2), 307–318. https://doi.org/10.14198/jhse.2021.16.Proc2.16

Figueira, B., Goncąlves, B., Abade, E., Paulauskas, R., Masiulis, N., Kamarauskas, P., & Sampaio, J. (2021). Repeated Sprint Ability in Elite Basketball Players: The Effects of 10 × 30 m Vs. 20 × 15 m Exercise Protocols on Physiological Variables and Sprint Performance. Journal of Human Kinetics, 77(1), 181–189. https://doi.org/10.2478/hukin-2020-0048

Hariyanto, A., Pramono, B. A., Mustar, Y. S., Sholikhah, A. M., & Prilaksono, M. I. A. (2022). Effect of Two Different Plyometric Trainings on Strength, Speed and Agility Performance. Proceedings of the 5th International Conference on Sport Science and Health (ICSSH 2021), 45(Icssh 2021), 109–115. https://doi.org/10.2991/ahsr.k.220203.017

Howe, L. P., Read, P., & Waldron, M. (2017). Muscle hypertrophy: A narrative review on training principles for increasing muscle mass. Strength and Conditioning Journal, 39(5), 72–81. https://doi.org/10.1519/SSC.0000000000000330

Kim, S., Rhi, S. Y., Kim, J., & Chung, J. S. (2022). Plyometric training effects on physical fitness and muscle damage in high school baseball players. Physical Activity and Nutrition, 26(1), 1–7. https://doi.org/10.20463/pan.2022.0001

Koch, A. J., Pereira, R., & Machado, M. (2014). The creatine kinase response to resistance exercise. Journal of Musculoskeletal Neuronal Interactions, 14(1), 68–77.

Komotska, O., & Sushko, R. (2022). Modern Approaches for the Physical Training of Young Female Basketball Players. Physical Education Theory and Methodology, 22(2), 260–267. https://doi.org/10.17309/tmfv.2022.2.17

Kurgan, N., McKee, K., Calleja, M., Josse, A. R., & Klentrou, P. (2020). Cytokines, Adipokines, and Bone Markers at Rest and in Response to Plyometric Exercise in Obese vs Normal Weight Adolescent Females. Frontiers in Endocrinology, 11(December), 1–11. https://doi.org/10.3389/fendo.2020.531926

Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. Il, Thompson, W., Kirkland, J. L., & Sandri, M. (2019). Sarcopenia: Aging-related loss of muscle mass and function. Physiological Reviews, 99(1), 427–511. https://doi.org/10.1152/physrev.00061.2017

Li, B., Feng, L., Wu, X., Cai, M., Yu, J. J., & Tian, Z. (2022). Effects of different modes of exercise on skeletal muscle mass and function and IGF-1 signaling during early aging in mice. Journal of Experimental Biology, 225(21). https://doi.org/10.1242/jeb.244650

Loenneke, J. P. (2021). Muscle Growth Does Not Contribute to the Increases in Strength that Occur after Resistance Training. Medicine and Science in Sports and Exercise, 53(9), 2011–2014. https://doi.org/10.1249/MSS.0000000000002662

Marzouki, H., Dridi, R., Ouergui, I., Selmi, O., Mbarki, R., Klai, R., Bouhlel, E., Weiss, K., & Knechtle, B. (2022). Effects of Surface-Type Plyometric Training on Physical Fitness in Schoolchildren of Both Sexes: A Randomized Controlled Intervention. Biology, 11(7). https://doi.org/10.3390/biology11071035

Mola, D. W., & Shaw, D. (2024). Analyzing The Reliability And Validity Of Talent Identification Practices For Athletes: An Adaptation Study. Educational Administration: Theory and Practice, 30(5), 12277–12284. https://doi.org/10.53555/kuey.v30i5.4248

Morris, S. J., Oliver, J. L., Pedley, J. S., Haff, G. G., & Lloyd, R. S. (2022). Comparison of Weightlifting, Traditional Resistance Training and Plyometrics on Strength, Power and Speed: A Systematic Review with Meta-Analysis. Sports Medicine, 52(7), 1533–1554. https://doi.org/10.1007/s40279-021-01627-2

Munshi, P., Khan, M. H., Arora, N. K., Nuhmani, S., Anwer, S., Li, H., & Alghadir, A. H. (2022). Effects of plyometric and whole-body vibration on physical performance in collegiate basketball players: a crossover randomized trial. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-09142-8

Musarò, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E. R., L Sweeney, H., & Rosenthal, N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics, 27(2), 195–200. https://doi.org/10.1038/84839

Noyes, F. R., & Barber-Westin, S. (2019). Return to Sport after ACL Reconstruction and Other Knee Operations: Limiting the Risk of Reinjury and Maximizing Athletic Performance. Return to Sport after ACL Reconstruction and Other Knee Operations: Limiting the Risk of Reinjury and Maximizing Athletic Performance, November 2019, 1–709. https://doi.org/10.1007/978-3-030-22361-8

Oliinyk, I., Doroshenko, E., Melnyk, M., Sushko, R., Tyshchenko, V., & Shamardin, V. (2021). Modern approaches to analysis of technical and tactical actions of skilled volleyball players. Physical Education Theory and Methodology, 21(3), 235–243. https://doi.org/10.17309/TMFV.2021.3.07

Osken, C., & Onay, C. (2022). Predicting the winning team in basketball: A novel approach. Heliyon, 8(12), e12189. https://doi.org/10.1016/j.heliyon.2022.e12189

Paes, P. P., Correia, G. A. F., Damasceno, V. D. O., Lucena, E. V. R., Alexandre, I. G., Da Silva, L. R., Dos Santos, W. R., & De Freitas Júnior, C. G. (2022). Effect of plyometric training on sprint and change of direction speed in young basketball athletes. Journal of Physical Education and Sport, 22(2), 305–310. https://doi.org/10.7752/jpes.2022.02039

Park, W., & Park, H. Y. (2022). New Trend of Physical Activity and Exercise for Health Promotion and Functional Ability. International Journal of Environmental Research and Public Health, 19(13). https://doi.org/10.3390/ijerph19137939

Patir, K., Singh, S. L., Singh, S. Sen, & Meetei, R. (2021). Effect of plyometric training on muscular endurance of football players. Kalyan Bharati, 36(September), 182–186. https://doi.org/10.13140/RG.2.2.27720.44802

Pechlivanos, R. G., Amiridis, I. G., Anastasiadis, N., Kannas, T., Sahinis, C., Duchateau, J., & Enoka, R. M. (2024). Effects of plyometric training techniques on vertical jump performance of basketball players. European Journal of Sport Science, 24(6), 682–692. https://doi.org/10.1002/ejsc.12097

Pernigoni, M., Ferioli, D., Butautas, R., La Torre, A., & Conte, D. (2021). Assessing the External Load Associated With High-Intensity Activities Recorded During Official Basketball Games. Frontiers in Psychology, 12(April), 1–8. https://doi.org/10.3389/fpsyg.2021.668194

Radu, A., Badau, D., & Badau, A. (2024). Improving the Jump Shots of U12 Junior Basketball Players by Implementing a Combined Program of Plyometric and Coordination Exercises Using MyVert Technology. Sensors, 24(12). https://doi.org/10.3390/s24123993

Reinoso, A. R. M., Erazo, A. P. A., Soto, G. F. F., Sánchez, Y. M. S., & Crespo, S. B. S. (2024). Plyometric exercises program in lower limbs to boost the jumping capacity in female basketball players under 12. Sapienza, 5(SI1), 1–10. https://doi.org/10.51798/sijis.v5isi1.762

Ribeiro, M. B. T., Guzzoni, V., Hord, J. M., Lopes, G. N., de Cássia Marqueti, R., de Andrade, R. V., Selistre-de-Araujo, H. S., & Durigan, J. L. Q. (2019). Author Correction: Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats (Scientific Reports, (2017), 7, 1, (8593), 10.1038/s41598-017-09343-6). Scientific Reports, 9(1), 42462. https://doi.org/10.1038/s41598-019-42462-w

Sánchez-Sixto, A., Harrison, A. J., & Floriá, P. (2021). Effects of Plyometric vs. Combined Plyometric Training on Vertical Jump Biomechanics in Female Basketball Players. Journal of Human Kinetics, 77(1), 25–35. https://doi.org/10.2478/hukin-2021-0009

Sartori, R., Romanello, V., & Sandri, M. (2021). Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nature Communications, 12(1), 1–12. https://doi.org/10.1038/s41467-020-20123-1

Scanlan, A. T., Fox, J. L., Borges, N. R., Tucker, P. S., & Dalbo, V. J. (2018). Temporal changes in physiological and performance responses across game-specific simulated basketball activity. Journal of Sport and Health Science, 7(2), 176–182. https://doi.org/10.1016/j.jshs.2016.05.002

Schoenfeld, B. J., Ogborn, D., & Krieger, J. W. (2017). Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. Journal of Sports Sciences, 35(11), 1073–1082. https://doi.org/10.1080/02640414.2016.1210197

Sellami, M., Bragazzi, N. L., Slimani, M., Hayes, L., Jabbour, G., De Giorgio, A., & Dugué, B. (2019). The effect of exercise on glucoregulatory hormones: A countermeasure to human aging: Insights from a comprehensive review of the literature. International Journal of Environmental Research and Public Health, 16(10). https://doi.org/10.3390/ijerph16101709

Singh, L. S., Singh, W. J., Azeem, K., Meitei, N. M., & Mola, D. W. (2024). Concept of Plyometric Training and Its Effect on Physiological Parameters of Football Players. Physical Education Theory and Methodology, 24(4), 609–618. https://doi.org/10.17309/tmfv.2024.4.13

Sole, S., Ramírez-Campillo, R., Andrade, D. C., & Sanchez-Sanchez, J. (2021). Plyometric jump training effects on the physical fitness of individual-sport athletes: A systematic review with meta-analysis. PeerJ, 9, 1–25. https://doi.org/10.7717/peerj.11004

Taber, C. B., Vigotsky, A., Nuckols, G., & Haun, C. T. (2019). Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports Medicine, 49(7), 993–997. https://doi.org/10.1007/s40279-019-01107-8

Weldon, A., Duncan, M. J., Turner, A., Lockie, R. G., & Loturco, I. (2022). Practices of strength and conditioning coaches in professional sports: A systematic review. Biology of Sport, 39(3), 715–726. https://doi.org/10.5114/BIOLSPORT.2022.107480

Yoshida, T., & Delafontaine, P. (2020). Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 9(9), 1–25. https://doi.org/10.3390/cells9091970

Descargas

Publicado

2025-04-01

Cómo citar

Putro, B. N., Cahyanto Wibawa, J., Ayubi, N., Dafun Jr, P. B., & Wen Ming, J. (2025). Concepto fisiológico del entrenamiento pliométrico para mejorar la aptitud física de los jugadores de baloncesto: una revisión sistemática. Retos, 66, 1000–1010. https://doi.org/10.47197/retos.v66.113684

Número

Sección

Revisiones teóricas sistemáticas y/o metaanálisis

Artículos más leídos del mismo autor/a

1 2 3 4 5 > >>