Sistemas de suministro y gasto de energía en el ejercicio físico – una revisión (Supply systems and expenditure of energy in physical exercise – a review)

Autores/as

  • Samuel Honório https://orcid.org/0000-0003-1863-344X
  • Jorge Santos 1Instituto Politécnico de Castelo Branco, SHERU (Sport, Health and Exercise Research Unit, Docente, Castelo Branco, Portugal. https://orcid.org/0000-0002-5187-4862
  • João Serrano 1Instituto Politécnico de Castelo Branco, SHERU (Sport, Health and Exercise Research Unit, Docente, Castelo Branco, Portugal.
  • João Petrica 1Instituto Politécnico de Castelo Branco, SHERU (Sport, Health and Exercise Research Unit, Docente, Castelo Branco, Portugal.
  • Miguel Rebelo 1Instituto Politécnico de Castelo Branco, SHERU (Sport, Health and Exercise Research Unit, Docente, Castelo Branco, Portugal.
  • Fernando Vieira Instituto Piaget/ISEIT, Kinesiolab – Laboratório de Análise do Movimento Humano; RECI – Research in Education, and Community Intervention, Docente, Almada, Portugal.
  • Marco Batista 1Instituto Politécnico de Castelo Branco, SHERU (Sport, Health and Exercise Research Unit, Docente, Castelo Branco, Portugal. https://orcid.org/0000-0003-3318-2472

DOI:

https://doi.org/10.47197/retos.v57.102980

Palabras clave:

gestión energética, sistemas, actividad física, deporte, gasto, transferencia de energía, ejercicio

Resumen

Muchas actividades deportivas, recreativas y ocupacionales requieren una liberación de energía de moderada a intensa y continua. El fraccionamiento aeróbico de carbohidratos, grasas y proteínas proporciona energía para el ejercicio debido a la fosforilación del difosfato de adenosina (ADP) a trifosfato de adenosina (ATP). Se produce un desequilibrio energético anaeróbico-aeróbico en ausencia de una tasa constante entre la fosforilación oxidativa del ADP en ATP y la energía necesaria para el ejercicio. Cuando hay un desequilibrio, la acidez de los tejidos aumenta y eventualmente aparece un estado de fatiga. Dos factores influyen en cómo los individuos son capaces de mantener un alto nivel de actividad física con una fatiga mínima: la capacidad y la integración de los sistemas fisiológicos para suministrar oxígeno y la capacidad de fibras musculares específicas activadas durante el ejercicio para generar ATP aeróbico.

Palabras clave: gestión energética, sistemas, actividad física, deporte, gasto, transferencia de energía, ejercicio.

Abstract. Many physical activities, recreational and occupational require a moderate to intense and continuous release of energy. Aerobic fractionation of carbohydrates, fats and proteins provides energy for exercise due to the phosphorylation of adenosine diphosphate (ADP) to adenosine triphosphate (ATP). An anaerobic-aerobic energy imbalance sets in the absence of a steady rate between the oxidative phosphorylation of ADP into ATP and the energy required for exercise. When there is an imbalance, tissue acidity increases and eventually a state of fatigue appears. Two factors influence how individuals can maintain a high level of physical activity with minimal fatigue: the capacity and integration of physiological systems to supply oxygen and the capacity of specific muscle fibers activated during exercise to generate aerobic ATP.

Keywords: energy management, systems, physical activity, sport, expenditure, energy transfer, exercise

Citas

Ardian, R., Prasetyo, Y., Sulistiyono, S., Arjuna, F., Suryadi, D., Dewantara, J., Septianto, I. & Subarjo, S. (2024). Application of Circuit Training Methods to Improve VO2max Physical Condition: An Experimental Study on Handball Athletes. Retos, 54, 660–666. https://doi.org/10.47197/retos.v54.103377

Alvarez, C., Campos-Jara, C., Gomes Ciolac, E., Vega-Guimaraes, G., Andrade-Mayorga, O., Cano-Montoya, J., Andrade, D., Delgado-Floody, P., Alonso-Martínez, A., Izquierdo, M. & Cigarroa, I. (2023). Hypertensive patients show higher heart rate response during incremental exercise and elevated arterial age estimation than normotensive adult peers:VASCU-HEALTHPROJECT. Retos, 50, 25–32.

https://doi.org/10.47197/retos.v50.99716

Andreassi, J. (2000). Psychophysiology: Human behavior and physiological response, 4th ed. Mahwah: Lawrence Erlbaum.

Arefirad, T., Seif, E., Sepidarkish, M., Mohammadian, N., Mousavifar, S., Yazdani, S., Rahimi, F., Einollahi, F., Heshmati, J. & Qorbani, M. (2022). Effect of exercise training on nitric oxide and nitrate/nitrite (NOx) production: A systematic review and meta-analysis. Front Physiol., 4, 13-25. doi: 10.3389/fphys.2022.953912.

Atkinson G, Davison R, Nevill A. Performance characteristics of gas analysis systems: what we know and what we need to know. International Journal of Sports Medicine 2005; 26(suppl. 1): S2–S10.

Beck, K., Hyatt, R., Mpougas, P. & Scanlon, P. (2001). Evaluation of pulmonary resistance and maximal expiratory flow measurements during exercise in humans. Journal of Applied Physiology, 86(4),1388-1395

Bell, H. (2006). Respiratory control at exercise onset: an integrated systems perspective. Respir. Physiol. Neurobiol., 152, 1-15. 10.1016/j.resp.2006.02.005

Billat, V., Slawinski, J. & Bocquet, V. (2000). Intermittent runs at VO2max enables subjects to remain at VO2max for a longer time than intense but sub maximal runs. European Journal of Applied Physiology, 81, 188-196

Billat, V., Palacin, F., Correa, M. & Pycke, J. (2020). Pacing Strategy Affects the Sub-Elite Marathoner's Cardiac Drift and Performance. Front Psychology, 19(10): 3026. doi: 10.3389/fpsyg.2019.03026. PMID: 32140116; PMCID: PMC7043260.

Bourscheid, G., Raquel, K., Costa, R., Petry, T., Danzmann, L., Pereira, A., Pereira, A., Franzoni, L. & Garcia, E. (2021). Efeito de diferentes modalidades de treinamento físico no consumo de oxigênio de pico em pacientes pós-infarto agudo do miocárdio: uma revisão sistemática e metanálise. Jornal Vascular Brasileiro, 20: e20210056. https://doi.org/10.1590/1677-5449.210056

Boff, S. (2016). "A fibra muscular e fatores que interferem no seu fenótipo." Acta fisiátrica 15(2): 111-116.

Bradley, J., Petek, Y., Groezinger, C., Pedlar, R. & Baggish, A. (2022). Cardiac effects of detraining in athletes: A narrative review, Annals of Physical and Rehabilitation Medicine, 65(4): 1015-1081. doi.org/10.1016/j.rehab.2022.101581.

Burtscher, J., Grégoire, P., Millet, N., Bengt, K. & Nadège, Z. (2002). The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection" International Journal of Molecular Sciences, 22(12): 64-79. https://doi.org/10.3390/ijms22126479

Cheng, A., Yamada, T., Rassier, D., Andersson, D., Westerblad, H. & Lanner, J. (2016). Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol., 5(18), 5149-5160. doi: 10.1113/JP270650.

Carpio, A. & Mora, J. (2019). Ventilator Management. Florida: StatPearls Publishing.

Carvalho, A. & Zin, W. (2011). Respiratory system dynamical mechanical properties: modeling in time and frequency domain. Biophys Rev., 2, 71-84

Cervantes Hernández, N., Hernandez Nájera, N. & Carrasco Legleu, C. (2022). Comparison of tests to measure muscle fatigue in training of male CrossFit athlete: a systematic review). Retos, 43, 923–930. https://doi.org/10.47197/retos.v43i0.89787

Coyle, E., Hemmert, M. & Coggan, A. (1985). Effects of detraining on cardiovascular responses to exercise: role of blood volume. J Appl Physiol, 60(1):95-9. doi: 10.1152/jappl.1986.60.1.95. PMID: 3944049.

Collins, M. (2009). Genetics and Sports. Medicine in Sport Science: Switzerland.

Darmawan, R., Mujahidin, I., Salamy, S., Azmy, U., Prabowo, I., Angga, D., Mohamed, A. & Herawati, L. (2024). Profile of F2-Isoprostane Level After 5-Day Administration of Robusta Coffee at a Steady State Dose in Subjects Performing Physical Exercise. Retos, 53, 116–121. https://doi.org/10.47197/retos.v53.102432

Dukes, D. (2020). Measuring the Henry's Law Constant for Carbon Dioxide and Water with UV-visible Absorption Spectroscopy. Anal Sci., 36(8), 971-975

Encarnação, I., Viana, R., Soares, S., Freitas, E., De Lira, C. & Ferreira-Junior, J. (2022). Effects of Detraining on Muscle Strength and Hypertrophy Induced by Resistance Training: A Systematic Review. Muscles. 2022; 1, 1:15. https://doi.org/10.3390/muscles1010001

Espinoza-Salinas, A., González-Jurado, J., Burdiles-Alvarez, A., Arenas-Sanchez, G. & Bobadilla, M. (2020). Effects of cardiovagal training on autonomic response in overweight people). Retos, 38, 118–122. https://doi.org/10.47197/retos.v38i38.73994

Fernandes, A., Gomes de Souza, R., Leite, D., Barros dos Santos, A., Rica, R., Baker, J., Gobbo, S., Bergamin, M. & Bocalini, D. (2024). Effects of different recovery times during high-intensity interval training using body weight on psychophysiological variables). Retos, 51, 109–116. https://doi.org/10.47197/retos.v51.99199

Garnacho-Castaña, M., Sánchez-Nuño, S., Molina-Raya, L. (2022). Circulating nitrate-nitrite reduces oxygen uptake for improving resistance exercise performance after rest time in well-trained CrossFit athletes. Sci Rep., 12, 71-96. https://doi.org/10.1038/s41598-022-13786-x

Goessler, K. & Marcos, D. (2012). "Hipertensão arterial, beta-bloqueadores e exercício físico aeróbio." Rev.Bras. Med., 69(4), 34-41

Hackett, D. (2020). Lung Function and Respiratory Muscle Adaptations of Endurance- and Strength-Trained Males. Sports (Basel), 10, 8-12. doi: 10.3390/sports8120160. PMID: 33321800; PMCID: PMC7764033.

Hackett, D. & Chow, C. (2013). The Valsalva maneuver: its effect on intra-abdominal pressure and safety issues during resistance exercise. J Strength Cond Res., 27(8), 2338-2345. doi: 10.1519/JSC.0b013e31827de07d.

Hernández, D., Pacheco, N., Poblete, I., Tórres, H., & Rodríguez-Núnez, I. (2020). Evaluation of the Talk Test as a method to estimate exercise intensity in healthy children). Retos, 37, 303–308. https://doi.org/10.47197/retos.v37i37.71456

Hermand, E., Lhuissier, F., Voituron, N. & Richalet, J. (2016). Ventilatory oscillations at exercise in hypoxia: a mathematical model. J. Theor. Biol., 4(11): 92-101. Doi: 10.1016/j.jtbi.2016.10.002

Hernández-Cruz, G., Estrada-Meneses, E. F., Ramos-Jiménez, A., Rangel-Colmenero, B., Reynoso-Sánchez, L., Miranda-Mendoza, J. & Quezada-Chacón, J. (2022). Relación entre el tipo de ejercicio físico y la fatiga cuantificada mediante VFC, CK y el lactato en sangre (Relationship between physical exercise type and fatigue quantified through HRV, CK, and blood lactate). Retos, 44, 176–182. https://doi.org/10.47197/retos.v44i0.89479

Herdy, A., Fay, C., Bornshein, C. & Stein, R. (2003). Importância da Análise da Frequência Cardíaca no Teste de Esforço. Rev. Bras. Med. Esporte, 9(4): 2-15

Hills, A., King, A. & Armstrong, T. (2007). The contribution of physical activity and sedentary behaviours to the growth and development of children and adolescents: implications for overweight and obesity. Sports Med., 37, 533–545.

Hourigan, M., McKinnon, N., Johnson, M., Rice, C., Stashuk, D, & Doherty, T. (2015). Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin. Neurophysiol., 126; 2381–2389. doi: 10.1016/j.clinph.2015.02.002

Jones, A., Poole, D. (2005). Oxygen Uptake Kinetics in Sport, Exercise and Medicine. Routledge: London and New York.

Kachur S., Chongthammakun V., Lavie C., De Schutter A., Arena R., Milani R., Franklin, B. (2017). Impact of cardiac rehabilitation and exercise training programs in coronary heart disease. Progress in Cardiovascular Diseases, 60:103–114. doi: 10.1016/j.pcad.2017.07.002.

Kenney, W., Larry, W. & Costil, D. (2015). Physiology of Sports and Exercise. 6th ed. Human Kinetics: Champaign, IL.

Kokkinos, P. & Myers, J. (2010). Exercise and physical activity: clinical outcomes and applications. Circulation. 122, 1637-1648. doi: 10.1161/CIRCULATIONAHA.110.948349

Mann, T., Lamberts, R. Lambert, M. (2013). Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med, 43(7):613-25. doi: 10.1007/s40279-013-0045-x. PMID: 23620244.

Malte, H. & Lykkeboe, G. (2018). The Bohr/Haldane effect: a model-based uncovering of the full extent of its impact on O2 delivery to and CO2 removal from tissues. J Appl Physiol., 125(3), 916-922

Martinez, M., Kim, J. & Shah, A. (2021). Exercise-induced cardiovascular adaptations and approach to exercise and cardiovascular disease. JACC State-Of-The-Art Review. J Am Coll Cardiol., 78(14), 1454-1470. doi: 10.1016/j.jacc.2021.08.003

Meeusen, R, Duclos, M., Foster, C., Fry, A., Gleeson, M. & Nieman, D. (2013). Prevention, diagnosis and treatment of the overtraining syndrome: joint consensus statement of the European college of sport science (ECSS) and the American college of sports medicine (ACSM). Eur. J. Sport Sci. 13 1–24. 10.1080/17461391.2012.730061

Molinar Contreras, M., Perez Garcia, A., Ramos-Jiménez, A., Hernández Torres, R. P. & Chavez-Guevara, I. (2023). Applications of Maximum Fat Oxidation and FATmax in the evaluation of sports performance in endurance-athletes: a narrative review). Retos, 47, 806–813. https://doi.org/10.47197/retos.v47.9519

McCarthy, O., Schmidt. S., Christensen, M., Bain, S., Nørgaard, K. & Bracken, R. (2022). The endocrine pancreas during exercise in people with and without type 1 diabetes: Beyond the beta-cell. Front. Endocrinol., 13: 98-103. doi: 10.3389/fendo.2022.981723

Morales, C. & Mathers, J. (2014). Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2014; 9:16. doi: 10.1371/journal.pone.0110034.

Moghetti, P., Bacchi, E., Brangani, C., Donà, S. & Negri, C. (2016). Metabolic Effects of Exercise. Front Horm Res, 47:44-57. doi: 10.1159/000445156. PMID: 27348753.

Nio, A., Rogers, S., Mynors-Wallis, R., Meah, V., Black, J. & Stembridge, M. (2020). The menopause alters aerobic adaptations to high-intensity interval training. Med Sci Sports Exerc., 52, 2096-2106. doi: 10.1249/MSS.0000000000002372

Pedersen, K. (2019). Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 15 383–392. 10.1038/S41574-019-0174-X

Olivares Arancibia, J., Solis-Urra, P., Porras-López, F., Federeci-Díaz, I., Rodríguez-Rodríguez, F., Zavala, J. & Cristi-Montero, C. (2021). Cardiac autonomic response during recovery using whole-body vibration after maximal cardiopulmonary exer. Retos, 42, 323–330. https://doi.org/10.47197/retos.v42i0.82484

Ozaki, H., Loenneke, J. & Abe, T. (2015). Blood flow-restricted walking in older women: does the acute hormonal response associate with muscle hypertrophy? Clin. Physiol. Funct. Imaging., 37: 379-383. doi: 10.1111/cpf.12312

Piasecki, M., Ireland. A., Piasecki, J., Degens, H., Stashuk, D., Swiecicka, A., Rutter, M., Jones, D. & McPhee, J. (2019). Long-Term Endurance and Power Training May Facilitate Motor Unit Size Expansion to Compensate for Declining Motor Unit Numbers in Older Age. Front. Physiol., 10: 44-49. doi: 10.3389/fphys.2019.00449

Petto, J., Santos, I., Silva, W., Sacramento. M. (2022). Athlete heart: chronic effects of physical detraining - a case report. Brazilian Journal of Development, 8(9), 61548-61556. https://doi.org/10.34117/bjdv8n9-076

Plotkin, D., Roberts, M., Haun, C. & Schoenfeld, B. (2021). Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports (Basel), 10, 99-127. doi: 10.3390/sports9090127. PMID: 34564332; PMCID: PMC8473039.

Potosí-Moya, V., Paredes-Gómez, R. & Durango-Sánchez, X. (2024). HIIT and its influence on VO2max in physiotherapy students. Retos, 54, 616–624. https://doi.org/10.47197/retos.v54.104333

Puhke, R., Aunola, S., Ailanto, P., Alev, K., Venojärvi, M., Rusko, H. & Seene, T. (2006). Adaptive changes of Myosin isoforms in response to long-term strength and power training in middle-aged men. J Sports Sci Med., 5(2): 349-358. DOI: PMID: 24260009;

Rankinen, T., Rice, T. & Boudreau, A. (2003). Titin is a candidate gene for stroke volume response to endurance training: the HERITAGE Family Study. Physiol Genomics, 15, 27-33.

Rivera-Brown, A., Frontera, W. (2012). Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PMR., 4, 797-804. doi: 10.1016/j.pmrj.2012.10.007.

Sandals, L. (2005). Oxygen uptake during middle-distance running [PhD thesis]. United Kingdom: University of Gloucestershire.

Serna, L., Mañanas, M., Hernández, A., Rabinovich, R. (2018). An Improved Dynamic Model for the Respiratory Response to Exercise. Front Physiol., 7, 59-69. doi: 10.3389/fphys.2018.00069.

Silva, J., Pereira, A., Pfeiffer, S., Neto, R., Rodrigues, S., Bemben, G., Patterson, D., Batista, G. & Cirilo-Sousa, M. (2019). Acute and Chronic Responses of Aerobic Exercise With Blood Flow Restriction: A Systematic Review. Front. Physiol., 10: 12-39. doi: 10.3389/fphys.2019.01239

Silva, D., Carnevale, D., Santos, D., Andrade, C., Filho, C. & Vasconcellos, F. (2024). Fatiga mental en el fútbol: respuestas comportamentales de jugadores de alto y bajo rendimiento táctico (Mental fatigue in football: behavioural responses of players with high and low tactical performance). Retos, 51, 666–671. https://doi.org/10.47197/retos.v51.101040

Stahl, M. (2002). The psychopharmacology of energy and fatigue. J. Clin. Psychiatry 63 7–8. 10.4088/JCP.V63N0102

Stewart, I. & McKenzie, C. (2002). The human spleen during physiological stress. Sports Med. 32; 361-369. doi: 10.2165/00007256-200232060-00002

Swain, P. (2000). Energy cost calculations for exercise prescription: an update. Sports Med, (1):17-22. doi: 10.2165/00007256-200030010-00002. PMID: 10907754.

Swift, D., Lavie, C., Johannsen, N., Arena, R., Earnest, C., O’Keefe, J., Milani, R., Blair, S., Church, T. (2013). Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J., 77, 281-92

Sjödin, B. & Jacobs, I. (1981). Onset of blood lactate accumulation and marathon running performance. Int J Sports Med., 2(1), 23-26. doi: 10.1055/s-2008-1034579. PMID: 7333732.

Sugawara, J., Tomoto, T. & Tanaka, H. (2016). Impact of leg blood flow restriction during walking on central arterial hemodynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 30(9): 732-739. doi: 10.1152/ajpregu. 00095.2015

Syamsudin, F., Herawati, L., Qurnianingsih, E., Kinanti, R. G., Vigriawan, G. E., Cahyaningrum, E. A., As’ad, M. R. F., & Callixte, C. (2023). Short Term HIIT increase VO2max, but can’t decrease Free Fatty Acids in Women Sedentary Lifestyle. Retos, 50, 380–386. https://doi.org/10.47197/retos.v50.99573

Tauda, M., Cruzat Bravo, E. & Suárez, Rojas, F. (2024). Metabolic and cardiac adaptations during a strength protocol at the anaerobic threshold over 8 weeks. Retos, 54, 406–416. https://doi.org/10.47197/retos.v54.103654

Taylor, L., Amann, M., Duchateau, J., Meeusen, R. & Rice, C. (2016). Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med Sci Sports Exerc., 48(11): 2294-2306. doi: 10.1249/MSS.0000000000000923.

Taneda, M., Pompeu, J. (2006). Fisiologia e importância do órgão tendinoso de Golgi no controle motor normal. Revista Neurociências, 14(1): 37-42. https://doi.org/10.34024/rnc.2006.v14.8785

Tebexreni, A., Novakoski, F., Alves, Â. & Hossri, A. (2022). Conceitos fisiológicos de importância para a compreensão das variáveis envolvidas no teste ergométrico e no teste cardiopulmonar. Rev Soc Cardiol, 19(3): 378-396

Tornero-Aguilera, J., Jimenez-Morcillo, J., Rubio-Zarapuz, A. & Clemente-Suárez, V. (2022). Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int J Environ Res Public Health., 19(7): 39-59. doi: 10.3390/ijerph19073909.

Thirupathi, A. & Pinho, R. (2018). Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem., 74, 359-367. https://doi.org/10.1007/s13105-018-0633-1

Toth, M., Miller, M., VanBuren, P., Bedrin, N., LeWinter, M., Ades, P. & Palmer, B. (2012). Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels. J Physiol., 1(5), 1243-1259. doi: 10.1113/jphysiol.2011.219659.

Tsukiyama, Y., Ito, T., Nagaoka, K., Eguchi, E. & Ogino, K. (2017). Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Biochem Nutr., 60(3), 180-186. doi: 10.3164/jcbn.16-108.

Tučková, D., Klugar, M., Sovová, E., Sovová, M. & Štégnerová, L. (2016). Effectiveness of β-blockers in physically active patients with hypertension: protocol of a systematic review. BMJ Open., 6(6), 105-134. doi: 10.1136/bmjopen-2015-010534.

Wasserman, K., Hansen, J., Sue, D., Whipp, B. & Casaburi, R. (2005). Principles of Exercise Testing and Interpretation. 4th ed. Philadelphia: Lippincot Williams & Wilkins.

Winter, E., Jones, A., Davidson, R. & Mercer, T. (2007). Sport and Exercise Physiology. Testing guidelines. Routeledge: London.

Whipp, B., Ward, S. & Rossiter, H. (2007). Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Medicine and Science in Sports and Exercise, 37, 1574:1585.

William, D., McArdle, F. & Kattch, L. (2010). Exercise Physiology – Nutrition, Energy, and Human Performance (seven Edition). USA: Lippincott Williams & Wilkins.

Publicado

2024-08-03

Cómo citar

Honório, S., Santos, J., Serrano, J., Petrica, J., Rebelo, M., Vieira, F., & Batista, M. (2024). Sistemas de suministro y gasto de energía en el ejercicio físico – una revisión (Supply systems and expenditure of energy in physical exercise – a review). Retos, 57, 758–767. https://doi.org/10.47197/retos.v57.102980

Número

Sección

Revisiones teóricas sistemáticas y/o metaanálisis

Artículos más leídos del mismo autor/a

<< < 1 2