La glutamina acelera la recuperación posterior al ejercicio de la potencia de los brazos, las piernas y la velocidad del smash en 48 horas para atletas de bádminton que no son de élite (Glutamine Accelerates Post-Exercise Recovery of Arms Power, Leg Power, and Smash Velocity at 48 Hours for Non-Elite Badminton Athletes)

Autores/as

  • Himawan Wismanadi Universitas Negeri Surabaya
  • Joesoef Roepajadi Universitas Negeri Surabaya
  • Pudjijuniarto Pudjijuniarto Universitas Negeri Surabaya
  • Afif Rusdiawan Universitas Negeri Surabaya https://orcid.org/0000-0001-5388-7061
  • Cleonara Yanuar Dini Universitas Negeri Surabaya
  • Anindya Mar’atus Sholikhah Universitas Negeri Surabaya

DOI:

https://doi.org/10.47197/retos.v53.102455

Palabras clave:

Glutamine, post-exercise, badminton, non-elite athletes

Resumen

El bádminton es un deporte que se caracteriza por contracciones musculares duraderas en movimientos continuos que provocan fatiga y la glutamina puede reducir potencialmente la incidencia de fatiga muscular. El objetivo del estudio es investigar la glutamina que afecta la recuperación post-ejercicio en atletas de bádminton que no son de élite. Fue un diseño de prueba previa y posterior a grupos aleatorios. Participaron veinte estudiantes varones y se dividieron en 2 grupos: el grupo de placebo (Plac) solo recibió instrucción para actividades de saltos smash y agua mineral, mientras que el grupo de glutamina (Glut) recibió actividades de saltos smash y agua mineral que contenía glutamina. Las actividades de salto smash se realizaron en 10 series con 20 repeticiones con un período de descanso de 30 segundos por serie. Se administró glutamina 3 veces después de 1 hora de actividades de salto, 24 horas y 48 horas con una dosis de 0.4 gramos/kg de peso corporal. Hubo diferencias significativas en el salto vertical, la potencia de las piernas, la potencia de los brazos y la velocidad del smash en pre-post-2 entre los grupos de Placebo y Glutamina con p<0.05. Mientras tanto, no se observaron diferencias en el salto vertical, la potencia de las piernas, la potencia de los brazos y la velocidad del smash (p>0.05) entre los grupos Placebo y Gluta-mine 72 horas después de las actividades de salto smash (después de 3). La administración de glutamina en una dosis de 0.4 gramos/kg de peso corporal administrada tres veces después del ejercicio smash (excéntrico) del salto puede acelerar la recuperación del salto vertical, la potencia de los brazos, la potencia de las piernas y la velocidad del smash 48 horas después del ejercicio. Se espera que los atletas de bádminton que juegan partidos a diario consuman glutamina para acelerar la recuperación.

Palabras clave: Glutamina; ejercicio físico; bádminton; atletas no elite

Abstract. Badminton is a sport that is characterized by long-lasting muscle contractions in continuous smash movements which lead to fatigue and glutamine can potentially reduce the incidence of muscle fatigue. The aim of the study is to investigate glutamine affecting post-exercise recovery in non-elite badminton athletes. It was a randomized group pre-test and post-test design. Twenty male students were involved and divided into 2 groups: The placebo (Plac) group was only given instruction for jumping smash activities and mineral water, while the glutamine (Glut) group was jumping smash activities and mineral water containing glutamine. The jumping smash activities were carried out in 10 sets with 20 repetitions with a rest period of 30 seconds per set. Glutamine was given 3 times after 1 hour of jumping smash activities, 24 hours, and 48 hours with a dose of 0.4 grams/KgBW. There were significant differences in the vertical jump, leg power, arm power, and smash velocity in pre-post-2 between the Placebo and Glutamine groups with p<0.05. Meanwhile, no difference was observed in the vertical jump, leg power, arm power, and smash velocity (p>0.05) between the Placebo and Glutamine groups 72 hours after the jumping smash activities (post 3). The administration of glutamine at a dose of 0.4 gram/Kg BW given three times post-jumping smash (eccentric) exercise can accelerate the 48-hour post-exercise recovery of vertical jump, arm power, leg power, and smash velocity. Badminton athletes who play matches daily are expected to consume glutamine to speed up recovery.

Keywords: Glutamine; physical exercise; badminton; non-elite athletes

Citas

American Dietetic Association, Dietitians of Canada, American College of Sports Medicine, Rodriguez, N. R., Di Marco, N. M., & Langley, S. (2009). American College of Sports Medicine position stand. Nutrition and athletic performance. Medicine and science in sports and exercise, 41(3), 709–731. https://doi.org/10.1249/MSS.0b013e31890eb86.

Aragonés, D., Eekhoff, A., Horst, F., & Schöllhorn, W. I. (2018). Fatigue-related changes in technique emerge at different timescales during repetitive training. Journal of sports sciences, 36(11), 1296–1304. https://doi.org/10.1080/02640414.2017.1374758.

Banfi, G., Colombini, A., Lombardi, G., & Lubkowska, A. (2012). Metabolic markers in sports medicine. Advances in clinical chemistry, 56, 1–54. https://doi.org/10.1016/b978-0-12-394317-0.00015-7.

Baranauskas, M., Jablonskienė, V., Abaravičius, J. A., Samsonienė, L., & Stukas, R. (2020). Dietary Acid-Base Balance in High-Performance Athletes. International journal of environmental research and public health, 17(15), 5332. https://doi.org/10.3390/ijerph17155332.

Bassini-Cameron, A., Monteiro, A., Gomes, A., Werneck-de-Castro, J. P., & Cameron, L. (2008). Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. British journal of sports medicine, 42(4), 260–266. https://doi.org/10.1136/bjsm.2007.040378.

Castell, L. M., Poortmans, J. R., & Newsholme, E. A. (1996). Does glutamine have a role in reducing infections in athletes?. European journal of applied physiology and occupational physiology, 73(5), 488–490. https://doi.org/10.1007/BF00334429.

Cervantes Hernández, N., Hernandez Nájera, N., & Carrasco Legleu, C. E. (2022). Comparison of tests to measure muscle fatigue in training of male CrossFit athlete: a systematic review. Retos, 43, 923–930. https://doi.org/10.47197/retos.v43i0.89787.

Chycki, J., Kurylas, A., Maszczyk, A., Golas, A., & Zajac, A. (2018). Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PloS one, 13(11), e0205708. https://doi.org/10.1371/journal.pone.0205708.

Coqueiro, A. Y., Rogero, M. M., & Tirapegui, J. (2019). Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition. Nutrients, 11(4), 863. https://doi.org/10.3390/nu11040863.

Córdova-Martínez, A., Caballero-García, A., Bello, H. J., Pérez-Valdecantos, D., & Roche, E. (2021). Effect of Glutamine Supplementation on Muscular Damage Biomarkers in Professional Basketball Players. Nutrients, 13(6), 2073. https://doi.org/10.3390/nu13062073.

Deka, P., Berg, K., Harder, J., Batelaan, H., & McGRATH, M. (2017). Oxygen cost and physiological responses of recreational badminton match play. The Journal of sports medicine and physical fitness, 57(6), 760–765. https://doi.org/10.23736/S0022-4707.16.06319-2.

Finsterer J. (2012). Biomarkers of peripheral muscle fatigue during exercise. BMC musculoskeletal disorders, 13, 218. https://doi.org/10.1186/1471-2474-13-218.

Gomez, M. A., Leicht, A. S., Rivas, F., & Furley, P. (2020). Long rallies and next rally performances in elite men's and women's badminton. PloS one, 15(3), e0229604. https://doi.org/10.1371/journal.pone.0229604.

Gomez, M. Á., Rivas, F., Connor, J. D., & Leicht, A. S. (2019). Performance Differences of Temporal Parameters and Point Outcome between Elite Men's and Women's Badminton Players According to Match-Related Contexts. International journal of environmental research and public health, 16(21), 4057. https://doi.org/10.3390/ijerph16214057.

Granata, K. P., Slota, G. P., & Wilson, S. E. (2004). Influence of fatigue in neuromuscular control of spinal stability. Human factors, 46(1), 81–91. https://doi.org/10.1518/hfes.46.1.81.30391.

Hader, K., Palazzi, D., & Buchheit, M. (2015). Change of direction speed in soccer: how much braking is enough?. Kinesiology, 47, 67–74.

Hirashima, M., Kadota, H., Sakurai, S., Kudo, K., & Ohtsuki, T. (2002). Sequential muscle activity and its functional role in the upper extremity and trunk during overarm throwing. Journal of sports sciences, 20(4), 301–310. https://doi.org/10.1080/026404102753576071.

Huang, C., Ye, J., Song, Y., Kovács, B., Baker, J. S., Mao, Z., & Gu, Y. (2023). The Effects of Fatigue on the Lower Limb Biomechanics of Amateur Athletes during a Y-Balance Test. Healthcare (Basel, Switzerland), 11(18), 2565. https://doi.org/10.3390/healthcare11182565.

Huang, H., Chatchawan, U., Eungpinichpong, W., & Hunsawong, T. (2019). Progressive decrease in leg-power performance during a fatiguing badminton field test. Journal of physical therapy science, 31(10), 765–770. https://doi.org/10.1589/jpts.31.765.

Huang, P., Liang, M., & Ren, F. (2019). Assessment of Long-Term Badminton Experience on Foot Posture Index and Plantar Pressure Distribution. Applied bionics and biomechanics, 2019, 8082967. https://doi.org/10.1155/2019/8082967.

Jin, G., Kataoka, Y., Tanaka, M., Mizuma, H., Nozaki, S., Tahara, T., Mizuno, K., Yamato, M., & Watanabe, Y. (2009). Changes in plasma and tissue amino acid levels in an animal model of complex fatigue. Nutrition (Burbank, Los Angeles County, Calif.), 25(5), 597–607. https://doi.org/10.1016/j.nut.2008.11.021.

Krieger, J. W., Crowe, M., & Blank, S. E. (2004). Chronic glutamine supplementation increases nasal but not salivary IgA during 9 days of interval training. Journal of applied physiology (Bethesda, Md. : 1985), 97(2), 585–591. https://doi.org/10.1152/japplphysiol.00971.2003.

Koch, A. J., Pereira, R., & Machado, M. (2014). The creatine kinase response to resistance exercise. Journal of musculoskeletal & neuronal interactions, 14(1), 68–77.

Legault, Z., Bagnall, N., & Kimmerly, D. S. (2015). The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise. International journal of sport nutrition and exercise metabolism, 25(5), 417–426. https://doi.org/10.1123/ijsnem.2014-0209.

Leite, J. S., Raizel, R., Hypólito, T. M., Rosa, T. D., Cruzat, V. F., & Tirapegui, J. (2016). l-glutamine and l-alanine supplementation increase glutamine-glutathione axis and muscle HSP-27 in rats trained using a progressive high-intensity resistance exercise. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 41(8), 842–849. https://doi.org/10.1139/apnm-2016-0049.

Le Mansec, Y., Pageaux, B., Nordez, A., Dorel, S., & Jubeau, M. (2018). Mental fatigue alters the speed and the accuracy of the ball in table tennis. Journal of sports sciences, 36(23), 2751–2759. https://doi.org/10.1080/02640414.2017.1418647.

Lu, C. C., Ke, C. Y., Wu, W. T., & Lee, R. P. (2023). L-Glutamine is better for treatment than prevention in exhaustive exercise. Frontiers in physiology, 14, 1172342. https://doi.org/10.3389/fphys.2023.1172342.

Markovic, G., & Jaric, S. (2006) ‘Vertical jump height represents a body size independent index of muscle power’, Journal of Biomechanics, 39, S552. https://doi.org/10.1016/S0021-9290(06)85275-9.

Matsunaga, N., & Kaneoka, K. (2018). Comparison of Modular Control during Smash Shot between Advanced and Beginner Badminton Players. Applied bionics and biomechanics, 2018, 6592357. https://doi.org/10.1155/2018/6592357.

Medina Corrales, M., Garrido Esquivel, A., Flores Cruz, M., Miranda Mendoza, F. J., García Dávila, M. Z., Hernández Cruz, G., & Naranjo Orellana, J. (2021). Utility of the RMSSD-Slope for internal training load quantification in elite badminton players. Case study. Retos, 40, 60–66. https://doi.org/10.47197/retos.v1i40.78348.

Moghadam-Kia, S., Oddis, C. V., & Aggarwal, R. (2016). Approach to asymptomatic creatine kinase elevation. Cleveland Clinic journal of medicine, 83(1), 37–42. https://doi.org/10.3949/ccjm.83a.14120.

Mohammed, Z. J., Sadown, H. M., & Humaidi, M. H. (2019). The effect of glutamine as a dietary supplement on some of the runner’s biochemical, physical and level of achievement responses. Journal of Human Sport and Exercise, 14(Proc5), S1884–S1890. https://doi.org/10.14198/JHSE.2019.14.PROC5.08.

Ooi, C. H., Tan, A., Ahmad, A., Kwong, K. W., Sompong, R., Ghazali, K. A., Liew, S. L., Chai, W. J., & Thompson, M. W. (2009). Physiological characteristics of elite and sub-elite badminton players. Journal of sports sciences, 27(14), 1591–1599. https://doi.org/10.1080/02640410903352907.

Orr, R., Pope, R., Peterson, S., Hinton, B., & Stierli, M. (2016). Leg Power As an Indicator of Risk of Injury or Illness in Police Recruits. International journal of environmental research and public health, 13(2), 237. https://doi.org/10.3390/ijerph13020237.

Park, S. K., Lam, W. K., Yoon, S., Lee, K. K., & Ryu, J. (2017). Effects of forefoot bending stiffness of badminton shoes on agility, comfort perception and lower leg kinematics during typical badminton movements. Sports biomechanics, 16(3), 374–386. https://doi.org/10.1080/14763141.2017.1321037.

Phomsoupha, M., Berger, Q., & Laffaye, G. (2018). Multiple Repeated Sprint Ability Test for Badminton Players Involving Four Changes of Direction: Validity and Reliability (Part 1). Journal of strength and conditioning research, 32(2), 423–431. https://doi.org/10.1519/JSC.0000000000002307.

Piattoly, T., & Welsch, M. A. (2004). L-Glutamine Supplementation. Medicine & Science in Sports & Exercise, 36(Supplement), S127. https://doi.org/10.1249/00005768-200405001-00603.

Raizel, R., Leite, J. S., Hypólito, T. M., Coqueiro, A. Y., Newsholme, P., Cruzat, V. F., & Tirapegui, J. (2016). Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise. The British journal of nutrition, 116(3), 470–479. https://doi.org/10.1017/S0007114516001999.

Rusdiana, A., Subarjah, H., Imanudin, I., Kusdinar, Y., Syahid, A.M., & Kurniawan, T. (2020). Effect of Fatigue on Biomechanical Variable Changes in Overhead Badminton Jump Smash’, Annals of Applied Sport Science, 8(1), 1–9. https://doi.org/10.29252/aassjournal.895.

Rusdiawan, A., & Taufikkurrachman, T. (2020). Effect of Glutamine Supplement Administration on the Reduction of Muscular Fatigue Post-Eccentric Exercise. Folia Medica Indonesiana, 55(4), 275. https://doi.org/10.20473/fmi.v55i4.17320.

Street, B., Byrne, C., & Eston, R. (2011). Glutamine Supplementation in Recovery From Eccentric Exercise Attenuates Strength Loss and Muscle Soreness. Journal of Exercise Science and Fitness, 9(2), 116–122. https://doi.org/10.1016/S1728-869X(12)60007-0.

van Hall, G., Saris, W. H., van de Schoor, P. A., & Wagenmakers, A. J. (2000). The effect of free glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man. International journal of sports medicine, 21(1), 25–30. https://doi.org/10.1055/s-2000-10688.

Vilmi, N., Äyrämö, S., Nummela, A., Pullinen, T., Linnamo, V., Häkkinen, K., & Mero, A.A. (2016). Oxygen Uptake, Acid-Base Balance and Anaerobic Energy System Contribution in Maximal 300 – 400 M Running in Child, Adolescent and Adult Athletes. Journal of Athletic Enhancement, 5(3), 1–8. https://doi.org/10.4172/2324-9080.1000231.

Wagner, H., Pfusterschmied, J., Von Duvillard, S. P., & Müller, E. (2012). Skill-dependent proximal-to-distal sequence in team-handball throwing. Journal of sports sciences, 30(1), 21–29. https://doi.org/10.1080/02640414.2011.617773.

Walklate, B. M., O'Brien, B. J., Paton, C. D., & Young, W. (2009). Supplementing regular training with short-duration sprint-agility training leads to a substantial increase in repeated sprint-agility performance with national level badminton players. Journal of strength and conditioning research, 23(5), 1477–1481. https://doi.org/10.1519/JSC.0b013e3181b339d9.

Wismanadi, H., Kafrawi, F. R., Pramono, M., Firmansyah, A., & Rusdiawan, A. (2020). Ratio of Training Intervals in Shadow Badminton Training on Power and Speed. Journal Sport Area, 5(2), 186-198. https://doi.org/10.25299/sportarea.2020.vol5(2).5019.

Wismanadi, H., Kafrawi, F.R., Sulistyarto, S., Hakim, A.A., Rusdiawan, A., Khuddus, L.A. (2021). Acceleration of Sports Recovery with Glutamine Supplementation in Vertical Jump and Badminton Smash Velocity. in Proceedings of the International Joint Conference on Arts and Humanities 2021 (IJCAH 2021). Surabaya: Atlantis Press, 377–381. https://doi.org/10.2991/ASSEHR.K.211223.065.

Xu, X., Ding, Y., Yang, Y., Gao, Y., Sun, Q., Liu, J., Yang, X., Wang, J., & Zhang, J. (2018). β-glucan Salecan Improves Exercise Performance and Displays Anti-Fatigue Effects through Regulating Energy Metabolism and Oxidative Stress in Mice. Nutrients, 10(7), 858. https://doi.org/10.3390/nu10070858.

Zhang, Q. (2020). Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sensors and Actuators, B: Chemical, 320. https://doi.org/10.1016/j.snb.2020.128325.

Descargas

Publicado

2024-04-01

Cómo citar

Wismanadi, H., Roepajadi, J., Pudjijuniarto, P., Rusdiawan, A., Dini, C. Y., & Sholikhah, A. M. (2024). La glutamina acelera la recuperación posterior al ejercicio de la potencia de los brazos, las piernas y la velocidad del smash en 48 horas para atletas de bádminton que no son de élite (Glutamine Accelerates Post-Exercise Recovery of Arms Power, Leg Power, and Smash Velocity at 48 Hours for Non-Elite Badminton Athletes). Retos, 53, 481–488. https://doi.org/10.47197/retos.v53.102455

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a