Adaptación locomotora sobre pasarela rodante con correa dividida en personas con ictus: una revisión sistemática
DOI:
https://doi.org/10.23938/ASSN.1035Palabras clave:
Ictus, Enfermedad neurológica, Marcha, Actividad motora, EquilibrioResumen
El objetivo de esta revisión fue evaluar la eficacia de la adaptación motora durante la marcha sobre cintas de marcha con correa dividida (CMCD) con diferentes condiciones de aprendizaje en personas con ictus.
Se realizó una búsqueda de ensayos clínicos aleatorizados y estudios de casos en cuatro bases de datos (Pubmed, Scopus, Web of Science, Brain-URJC), publicados desde enero de 2011 hasta abril de 2022, que utilizasen CMCD bajo diferentes condiciones de aprendizaje. Se extrajeron datos sobre el objetivo, la intervención, la población, el número de sesiones, las medidas de resultados y los resultados obtenidos. Se valoró la calidad metodologica para estudios cuantitativos con la Critical Review Form.
De los 79 estudios identificados, se incluyeron seis en la revisión, cuatro ensayos clínicos aleatorizados y dos series de casos. Incluyeron 156 personas con ictus crónico, 62,8% hombres, entre los 21-85 años de edad. La locomoción sobre CMCD puede generar artefactos en el patrón de marcha, según la condición experimental utilizada. Dos series de casos y un ensayo observaron que la doble tarea motora, la inclinación de la pendiente de la CMCD o el cambio gradual de velocidad, fomentarían la retención de los artefactos generados por las perturbaciones, redundando en el aprendizaje de un nuevo patrón motor.
Sin embargo, incluir ejercicio físico de diferente intensidad y en diferentes momentos en combinación con CMCD, maximizar o minimizar los errores, o incluir perturbaciones variables o constantes de la velocidad, parecen no mostrar un efecto sobre el proceso de adaptación locomotora.
Descargas
Citas
SANJUAN E, PANCORBO O, SANTANA K, MIÑARRO O, SALA V, MUCHADA M et al. Manejo del ictus agudo. Tratamientos y cuidados específicos de enfermería en la Unidad de Ictus. Neurol (Engl Ed). 2020. http://doi.org/10.1016/j.nrl.2020.07.025
NOE-SEBASTIAN E, BALASCH-BERNAT M, COLOMER-FONT C, MOLINER-MUNOZ B, RODRIGUEZ SANCHEZ-LEIVA C, UGART P et al. Ictus y discapacidad: estudio longitudinal en pacientes con discapacidad moderada-grave tras un ictus incluidos en un programa de rehabilitación multidisciplinar. Rev Neurol 2017; 64(9): 385-392. https://doi.org/10.33588/rn.6409.2016527
DZEWALTOWSKI AC, HEDRICK EA, LEUTZINGER TJ, REMSKI LE, ROSEN AB. The effect of split-belt treadmill interventions on step length asymmetry in individuals poststroke: A systematic review with meta-analysis. Neurorehabil Neural Repair 2021; 35(7): 563-575. https://doi.org/10.1177/15459683211011226
TORRES-OVIEDO G, VASUDEVAN E, MALONE L, BASTIAN AJ. Locomotor adaptation. Prog Brain Res 2011; 191: 65–74. http://doi.org/10.1016/B978-0-444-53752-2.00013-8
SERRANO MORENO JI, DEL CASTILLO SOBRINO MD, OLIVEIRA BARROSO FA, TORRICELLI D, TORRES-OVIEDO G. Nuevos métodos de evaluación de la marcha humana. En: Molina Rueda F, Carratalá Tejada M. La marcha humana. Biomecánica, evaluación y patología. 1º ed. Madrid: Médica Panamericana, 2020; 94-96.
HELM EE, REISMAN DS. The split-belt walking paradigm: Exploring motor learning and spatiotemporal asymmetry poststroke. Phys Med Rehabil Clin N Am 2015; 26(4): 703-713. http://doi.org/10.1016/j.pmr.2015.06.010
BASTIAN AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol 2008; 21(6): 628-633. http://doi.org/10.1097/WCO.0b013e328315a293
TYRELL CM, HELM E, REISMAN DS. Locomotor adaptation is influenced by the interaction between perturbation and baseline asymmetry after stroke. J Biomech 2015; 48(11): 2849-2857. http://doi.org/10.1016/j.jbiomech.2015.04.027
REISMAN DS, WITYK R, SILVER K, BASTIAN AJ. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair 2009; 23(7): 735-744. https://doi.org/10.1177/1545968309332
HINTON DC, CONRADSSON DM, PAQUETTE C. Understanding human neural control of short-term gait adaptation to the split-belt treadmill. Neuroscience 2020; 451:36-50. http://doi.org/10.1016/j.neuroscience.2020.09.055
HOOGKAMER W. Perception of gait asymmetry during split-belt walking. Exerc Sport Sci Rev 2017; 45(1): 34–40. http://doi.org/10.1249/JES.0000000000000094
REISMAN DS, WITYK R, SILVER K, BASTIAN AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 2007; 130(7): 1861–1872. http://doi.org/10.1093/brain/awm035
PAGE MJ, MCKENZIE JE, BOSSUYT PM, BOUTRON I, HOFFMANN TC, MULROW CD et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Esp Cardiol 2021; 74(9): 790–799. http://doi.org/10.1016/j.recesp.2021.06.016
LAW M, STEWART D, POLLOCK N, LETTS L, BOSCH J, WESTMORLAND M. Critical Review Form -Quantitative Studies Law. Hamilton: McMaster University, 1998. https://www.unisa.edu.au/siteassets/episerver-6-files/global/health/sansom/documents/icahe/cats/mcmasters_quantitative-review.pdf
MELLA SOUSA M, ZAMORA NAVAS P, MELLA LABORDE M, BALLESTER ALFARO JJ, UCEDA CARRASCOSA P. Niveles de evidencia clínica y grados de recomendación. Rev. S. And. Traumatología y Ortopedia 2012; 29(1): 59-72. https://www.portalsato.es/documentos/revista/Revista12-1/Rev.%202012-1-07.pdf
CHERRY-ALLEN KM, STATTON MA, CELNIK PA, BASTIAN AJ. A dual-learning paradigm simultaneously improves multiple features of gait post-stroke. Neurorehabil Neural Repair 2018; 32(9): 810–820. http://doi.org/10.1177/1545968318792623
SOMBRIC CJ, TORRES-OVIEDO G. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths. J Neuroeng Rehabil 2020; 17(1): 69. http://doi.org/10.1186/s12984-020-00698-y
LEWEK MD, BRAUN CH, WUTZKE C, GIULIANI C. The role of movement errors in modifying spatiotemporal gait asymmetry post stroke: a randomized controlled trial. Clin Rehabil 2018; 32(2): 161-172. http://doi.org/10.1177/0269215517723056
CHARALAMBOUS CC, ALCANTARA CC, FRENCH MA, LI X, MATT KS, KIM HE et al. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes. J Physiol 2018; 596(10): 1999-2016. http://doi.org/10.1113/JP275881
HELM EE, POHLIG RT, KUMAR DS, REISMAN DS. Practice structure and locomotor learning after stroke. J Neurol Phys Ther 2019; 43(2): 85-93. http://doi.org/10.1097/NPT.0000000000000260
ALCÂNTARA CC, CHARALAMBOUS CC, MORTON SM, RUSSO TL, REISMAN DS. Different error size during locomotor adaptation affects transfer to overground walking poststroke. Neurorehabil Neural Repair 2018; 32(12): 1020-1030. http://doi.org/10.1177/1545968318809921
KAO P-C, SRIVASTAVA S, AGRAWAL SK, SCHOLZ JP. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals. Gait Posture 2013; 37(1): 113-120. http://doi.org/10.1016/j.gaitpost.2012.06.025
VAN VLIET PM, WULF G. Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil Rehabil 2006; 28(13–14): 831-840. http://doi.org/10.1080/09638280500534937
THOMAS R, BECK MM, LIND RR, KORSGAARD JOHNSEN L, GEERTSEN SS, CHRISTIANSEN L et al. Acute exercise and motor memory consolidation: The role of exercise timing. Neural Plast 2016; 2016:1-11. http://doi.org/10.1155/2016/6205452
THOMAS R, JOHNSEN LK, GEERTSEN SS, CHRISTIANSEN L, RITZ C, ROIG M et al. Acute exercise and motor memory consolidation: The role of exercise intensity. PLoS One 2016; 11(7): e0159589. http://doi.org/10.1371/journal.pone.0159589
NEPVEU J-F, THIEL A, TANG A, FUNG J, LUNDBYE-JENSEN J, BOYD LA et al. A single bout of high-intensity interval training improves motor skill retention in individuals with stroke. Neurorehabil Neural Repair 2017; 31(8): 726-735. http://doi.org/10.1177/1545968317718269
HELM EE, MATT KS, KIRSCHNER KF, POHLIG RT, KOHL D, REISMAN DS. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol Learn Mem 2017; 144:77-85. http://doi.org/10.1016/j.nlm.2017.06.003
TAYLOR JA, IVRY RB. The role of strategies in motor learning. Ann N Y Acad Sci 2012; 1251(1): 1-12. http://doi.org/10.1111/j.1749-6632.2011.06430.x
HANLON RE. Motor learning following unilateral stroke. Arch Phys Med Rehabil 1996; 77(8): 811-815. http://doi.org/10.1016/s0003-9993(96)90262-2
DOYA K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 2000; 10(6): 732-739. http://doi.org/10.1016/s0959-4388(00)00153-7
SCHWEIGHOFER N, LEE J-Y, GOH H-T, CHOI Y, KIM SS, STEWART JC et al. Mechanisms of the contextual interference effect in individuals poststroke. J Neurophysiol 2011; 106(5): 2632-2641. http://doi.org/10.1152/jn.00399.2011
CAURAUGH JH, KIM SB. Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. J Neurol Neurosurg Psychiatry 2003; 74(11): 1562-1566. http://doi.org/10.1136/jnnp.74.11.1562
LAUZIÈRE S, MIÉVILLE C, BETSCHART M, DUCLOS C, AISSAOUI R, NADEAU S. Plantarflexion moment is a contributor to step length after-effect following walking on a split-belt treadmill in individuals with stroke and healthy individuals. J Rehabil Med 2014; 46(9): 849-857. http://doi.org/10.2340/16501977-1845
BETSCHART M, LAUZIÈRE S, MIÉVILLE C, MCFADYEN BJ, NADEAU S. Changes in lower limb muscle activity after walking on a split-belt treadmill in individuals post-stroke. J Electromyogr Kinesiol 2017; 32: 93-100. http://doi.org/10.1016/j.jelekin.2016.12.007
SOMBRIC CJ, CALVERT JS, TORRES-OVIEDO G. Large propulsion demands increase locomotor adaptation at the expense of step length symmetry. Front Physiol 2019; 10:60. http://doi.org/10.3389/fphys.2019.00060
AWAD LN, REISMAN DS, KESAR TM, BINDER-MACLEOD SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil 2014; 95(5): 840-848. http://doi.org/10.1016/j.apmr.2013.12.012
HSIAO H, HIGGINSON JS, BINDER-MACLEOD SA. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke. J Neuroeng Rehabil 2016; 13(1): 2. http://doi.org/10.1186/s12984-016-0113-1
HSIAO H, KNARR BA, HIGGINSON JS, BINDER-MACLEOD SA. Mechanisms to increase propulsive force for individuals poststroke. J Neuroeng Rehabil 2015; 12(1). http://doi.org/10.1186/s12984-015-0030-8
HSIAO H, ZABIELSKI TM JR, PALMER JA, HIGGINSON JS, BINDER-MACLEOD SA. Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke. J Biomech 2016; 49(16): 4107-4112. http://doi.org/10.1016/j.jbiomech.2016.10.003
KESAR TM, REISMAN DS, PERUMAL R, JANCOSKO AM, HIGGINSON JS, RUDOLPH KS et al. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 2011; 33(2): 309-313. http://doi.org/10.1016/j.gaitpost.2010.11.019
TYRELL CM, HELM E, REISMAN DS. Learning the spatial features of a locomotor task is slowed after stroke. J Neurophysiol 2014; 112(2): 480-489. http://doi.org/10.1152/jn.00486.2013
STATTON MA, TOLIVER A, BASTIAN AJ. A dual-learning paradigm can simultaneously train multiple characteristics of walking. J Neurophysiol 2016; 115(5): 2692-2700. http://doi.org/10.1152/jn.00090.2016
KRAKAUER JW, GHILARDI MF, GHEZ C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 1999; 2(11): 1026-1031. http://doi.org/10.1038/14826
BAYS PM, FLANAGAN JR, WOLPERT DM. Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory. Exp Brain Res 2005; 163(3): 400-405. http://doi.org/10.1007/s00221-005-2299-5
MALONE LA, BASTIAN AJ. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke. Neurorehabil Neural Repair 2014; 28(3): 230-240. http://doi.org/10.1177/1545968313505912
WOOLLACOTT M, SHUMWAY-COOK A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 2002; 16(1): 1-14. http://doi.org/10.1016/s0966-6362(01)00156-4
HOLTZER R, STERN Y, RAKITIN BC. Age-related differences in executive control of working memory. Mem Cognit 2004; 32(8): 1333–1345. http://doi.org/10.3758/bf03206324
PLUMMER-D’AMATO P, ALTMANN LJP, SARACINO D, FOX E, BEHRMAN AL, MARSISKE M. Interactions between cognitive tasks and gait after stroke: a dual task study. Gait Posture 2008; 27(4): 683-688. http://doi.org/10.1016/j.gaitpost.2007.09.001
TORRES-OVIEDO G, BASTIAN AJ. Natural error patterns enable transfer of motor learning to novel contexts. J Neurophysiol 2012; 107(1): 346-356. http://doi.org/10.1152/jn.00570.2011
BERNIKER M, KORDING K. Estimating the sources of motor errors for adaptation and generalization. Nat Neurosci 2008; 11(12): 1454-1461. http://doi.org/10.1038/nn.2229
WEI K, KÖRDING K. Relevance of error: what drives motor adaptation? J Neurophysiol 2009; 101(2): 655-664. http://doi.org/10.1152/jn.90545.2008
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
La revista Anales del Sistema Sanitario de Navarra es publicada por el Departamento de Salud del Gobierno de Navarra (España), quien conserva los derechos patrimoniales (copyright ) sobre el artículo publicado y favorece y permite la difusión del mismo bajo licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (CC BY-SA 4.0). Esta licencia permite copiar, usar, difundir, transmitir y exponer públicamente el artículo, siempre que siempre que se cite la autoría y la publicación inicial en Anales del Sistema Sanitario de Navarra, y se distinga la existencia de esta licencia de uso.