Células dendríticas especializadas en presentación de antígenos exógenos a linfocitos T citotóxicos
Resumen
Las células dendríticas son células de origen hematopoiético, que expresan constitutivamente moléculas presentadoras de antígeno MHC de clase I y II, y son funcionalmente las inductoras más potentes de la activación y proliferación de linfocitos T a los que presentan antígenos. Los linfocitos T CD8+ proliferan y adquieren capacidad citotóxica cuando reconocen su antígeno específico presentado en la superficie de una o varias células dendríticas con las que interactúan. Sin embargo, solamente algunas subpoblaciones de células dendríticas pueden presentar antígenos internalizados desde el exterior celular a través de procesos de pinocitosis y fagocitosis a precursores de linfocitos T citotóxicos. Esta función se denomina presentación cruzada o presentación subrogada (en inglés, crosspresentation) y requiere mecanismos de translocación de los antígenos que se encuentran internalizados en fagosomas al citosol para su procesamiento. Se ha establecido que la diferenciación de subpoblaciones de células dendríticas con capacidad de efectuar este tipo de presentación cruzada a linfocitos T CD8+ son dependientes del factor de crecimiento FLT-3L y del factor de transcripción BATF3. Presentan peculiaridades tanto funcionales como de marcadores de membrana que nos permiten identificarlas. En ratones se distinguen por la expresión de CD8a y en humanos por la de CD141 (BDCA-3). Esta población en ambas especies es capaz de internalizar selectivamente restos de células necróticas mediante su receptor CLEC9A que se une a actina polimerizada extracelular. Disponen del receptor de quimioquinas XCR1 que asegura su encuentro con linfocitos T CD8+. La vacunación terapéutica con antígenos tumorales utilizando células dendríticas es una estrategia en desarrollo para el tratamiento del cáncer. La utilización de subpoblaciones de células dendríticas con mayor capacidad de realizar presentación cruzada o subrogada remeda los mecanismos naturales de inmunización para inducir linfocitos T citotóxicos. La dianización in vivo de antígenos a estas subpoblaciones celulares mediante anticuerpos monoclonales anti-DEC-205 o anti-CLEC9A consigue respuestas inmunitarias muy intensas y se están probando en ensayos clínicos frente a viriasis crónicas y enfermedades malignas.
Descargas
Citas
1. STEINMAN RM, COHN ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137: 1142-1162.
https://doi.org/10.1084/jem.137.5.1142
2. STEINMAN RM, COHN ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med 1974; 139: 380-397.
https://doi.org/10.1084/jem.139.2.380
3. STEINMAN RM, LUSTIG DS, COHN ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med 1974; 139: 1431-1445.
https://doi.org/10.1084/jem.139.6.1431
4. LANZAVECCHIA A, SALLUSTO F. RALPH M. STEINMAN 1943-2011. Cell 2011; 147: 1216-1217.
https://doi.org/10.1016/j.cell.2011.11.040
5. INABA K. A TRIBUTE TO RALPH M. STEINMAN. Int Immunol 2012; 24: 1-3.
https://doi.org/10.1093/intimm/dxr101
6. STEINMAN RM. Dendritic cells: understanding immunogenicity. Eur J Immunol 2007; 37 Suppl 1: S53-60.
https://doi.org/10.1002/eji.200737400
7. ARDAVIN C. Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 2003; 3: 582-5890.
https://doi.org/10.1038/nri1127
8. STEINMAN RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30: 1-22.
https://doi.org/10.1146/annurev-immunol-100311-102839
9. BANCHEREAU J, STEINMAN RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245-252.
10. STEINMAN RM, HAWIGER D, LIU K, BONIFAZ L, BONNYAY D, MAHNKE K et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 2003; 987: 15-25.
https://doi.org/10.1111/j.1749-6632.2003.tb06029.x
11. DZOPALIC T, RAJKOVIC I, DRAGICEVIC A, Colic M. The response of human dendritic cells to co-ligation of pattern-recognition receptors. Immunol Res 2012; 52: 20-33.
https://doi.org/10.1007/s12026-012-8279-5
12. LIU YJ, KANZLER H, SOUMELIS V, GILLIET M. Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2001; 2: 585-589.
13. UNDERHILL DM, GOODRIDGE HS. Information processing during phagocytosis. Nat Rev Immunol 2012; 12: 492-502.
https://doi.org/10.1038/nri3244
14. HOPKINS RA, CONNOLLY JE. The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 2012; 53: 91-107.
https://doi.org/10.1007/s12026-012-8300-z
15. HEATH WR, VILLADANGOS JA. No driving without a license. Nat Immunol 2005; 6: 125-126.
https://doi.org/10.1038/ni0205-125
16. HESPEL C, MOSER M. Role of inflammatory dendritic cells in innate and adaptive immunity. Eur J Immunol 2012; 42: 2535-2543.
https://doi.org/10.1002/eji.201242480
17. MACAGNO A, NAPOLITANI G, LANZAVECCHIA A, SALLUSTO F. Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 2007; 28: 227-233.
https://doi.org/10.1016/j.it.2007.03.008
18. MULLER JR, WALDMANN TA, KRUHLAK MJ, DUBOIS S. Paracrine and transpresentation functions of IL-15 are mediated by diverse splice versions of IL-15Ralpha in human monocytes and dendritic cells. J Biol Chem 2012; 287: 40328-40338.
https://doi.org/10.1074/jbc.M112.378612
19. STEEL JC, WALDMANN TA, MORRIS JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012; 33: 35-41.
https://doi.org/10.1016/j.tips.2011.09.004
20. HERVAS-STUBBS S, PEREZ-GRACIA JL, ROUZAUT A, SANMAMED MF, LE BON A, MELERO I. Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 2011; 17: 2619-2627.
https://doi.org/10.1158/1078-0432.CCR-10-1114
21. HERVAS-STUBBS S, MANCHENO U, RIEZU-BOJ JI, LARRAGA A, OCHOA MC, ALIGNANI D et al. CD8 T cell priming in the presence of IFN-alpha renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J Immunol 2012; 189: 3299-3310.
https://doi.org/10.4049/jimmunol.1102495
22. ZELANTE T, FRIC J, WONG AY, Ricciardi-Castagnoli P. Interleukin-2 production by dendritic cells and its immuno-regulatory functions. Front Immunol 2012; 3: 161.
https://doi.org/10.3389/fimmu.2012.00161
23. REIS E SOUSA C. Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 2004; 16: 21-25.
https://doi.org/10.1016/j.coi.2003.11.007
24. DIEU-NOSJEAN MC, VICARI A, LEBECQUE S, CAUX C. Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines. J Leukoc Biol 1999; 66: 252-262.
https://doi.org/10.1002/jlb.66.2.252
25. FORSTER R, DAVALOS-MISSLITZ AC, ROT A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 2008; 8: 362-371.
https://doi.org/10.1038/nri2297
26. ROUZAUT A, GARASA S, TEIJEIRA A, GONZALEZ I, MARTINEZ-FORERO I, SUAREZ N et al. Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN-alpha. Eur J Immunol 2010; 40: 3054-3063.
https://doi.org/10.1002/eji.201040523
27. TEIJEIRA A, PALAZON A, GARASA S, MARRE D, AUBA C, ROGEL A et al. CD137 on inflamed lymphatic endothelial cells enhances CCL21-guided migration of dendritic cells. FASEB J 2012; 26: 3380-3392.
https://doi.org/10.1096/fj.11-201061
28. GORDON S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002; 111: 927-930.
https://doi.org/10.1016/S0092-8674(02)01201-1
29. MATZINGER P. An innate sense of danger. Semin Immunol 1998; 10: 399-415.
https://doi.org/10.1006/smim.1998.0143
30. MATZINGER P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991-1045.
https://doi.org/10.1146/annurev.iy.12.040194.005015
31. REID SD, PENNA G, ADORINI L. The control of T cell responses by dendritic cell subsets. Curr Opin Immunol 2000; 12: 114-121.
https://doi.org/10.1016/S0952-7915(99)00059-X
32. ZOU J, KAWAI T, TSUCHIDA T, KOZAKI T, TANAKA H, SHIN KS et al. Poly IC triggers a cathepsin D- and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis. Immunity 2013; 38: 717-728.
https://doi.org/10.1016/j.immuni.2012.12.007
33. JANEWAY CA, JR., MEDZHITOV R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197-216.
https://doi.org/10.1146/annurev.immunol.20.083001.084359
34. SPORRI R, REIS E SOUSA C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 2005; 6: 163-170.
https://doi.org/10.1038/ni1162
35. SALLUSTO F, LANZAVECCHIA A. The instructive role of dendritic cells on T-cell responses. Arthritis Res 2002; 4 Suppl 3: S127-132.
36. ROMANI N, GRUNER S, BRANG D, KAMPGEN E, LENZ A, TROCKENBACHER B et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83-93.
https://doi.org/10.1084/jem.180.1.83
37. INABA K, INABA M, ROMANI N, AYA H, DEGUCHI M, IKEHARA S et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693-1702.
https://doi.org/10.1084/jem.176.6.1693
38. MAZZOLINI G, ALFARO C, SANGRO B, FEIJOO E, RUIZ J, BENITO A et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol 2005; 23: 999-1010.
https://doi.org/10.1200/JCO.2005.00.463
39. SANTINI SM, DI PUCCHIO T, LAPENTA C, PARLATO S, LOGOZZI M, BELARDELLI F. A new type I IFN-mediated pathway for the rapid differentiation of monocytes into highly active dendritic cells. Stem Cells 2003; 21: 357-362.
https://doi.org/10.1634/stemcells.21-3-357
40. MOHAMADZADEH M, BERARD F, ESSERT G, CHALOUNI C, PULENDRAN B, DAVOUST J et al. Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J Exp Med 2001; 194: 1013-1020.
https://doi.org/10.1084/jem.194.7.1013
41. STEINMAN RM, NUSSENZWEIG MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 2002; 99: 351-358.
https://doi.org/10.1073/pnas.231606698
42. ITO T, AMAKAWA R, INABA M, HORI T, OTA M, NAKAMURA K et al. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J Immunol 2004; 172: 4253-4259.
https://doi.org/10.4049/jimmunol.172.7.4253
43. BLOM B, HO S, ANTONENKO S, LIU YJ. Generation of interferon alpha-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem cells. J Exp Med 2000; 192: 1785-1796.
https://doi.org/10.1084/jem.192.12.1785
44. DONAGHY H, GAZZARD B, GOTCH F, PATTERSON S. Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 2003; 101: 4505-4511.
https://doi.org/10.1182/blood-2002-10-3189
45. COLONNA M, TRINCHIERI G, LIU YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219-1226.
https://doi.org/10.1038/ni1141
46. LIU YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23: 275-306.
https://doi.org/10.1146/annurev.immunol.23.021704.115633
47. REIZIS B, BUNIN A, GHOSH HS, LEWIS KL, SISIRAK V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011; 29: 163-183.
https://doi.org/10.1146/annurev-immunol-031210-101345
48. TEL J, SCHREIBELT G, SITTIG SP, MATHAN TS, BUSCHOW SI, CRUZ LJ et al. Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets. Blood 2013; 121: 459-467.
https://doi.org/10.1182/blood-2012-06-435644
49. TEL J, AARNTZEN EH, BABA T, SCHREIBELT G, SCHULTE BM, BENITEZ-RIBAS D et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 2013; 73: 1063-1075.
https://doi.org/10.1158/0008-5472.CAN-12-2583
50. JOFFRE OP, SEGURA E, SAVINA A, AMIGORENA S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12: 557-569.
https://doi.org/10.1038/nri3254
51. SEGURA E, VILLADANGOS JA. A modular and combinatorial view of the antigen cross-presentation pathway in dendritic cells. Traffic 2011; 12: 1677-1685.
https://doi.org/10.1111/j.1600-0854.2011.01254.x
52. MANTEGAZZA AR, MAGALHAES JG, AMIGORENA S, MARKS MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2013; 14: 135-152.
https://doi.org/10.1111/tra.12026
53. HEGDE RS, PLOEGH HL. Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 2010; 22: 437-446.
https://doi.org/10.1016/j.ceb.2010.05.005
54. SCHULZE MS, WUCHERPFENNIG KW. The mechanism of HLA-DM induced peptide exchange in the MHC class II antigen presentation pathway. Curr Opin Immunol 2012; 24: 105-111.
https://doi.org/10.1016/j.coi.2011.11.004
55. BEVAN MJ. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 1976; 143: 1283-1288.
https://doi.org/10.1084/jem.143.5.1283
56. BEVAN MJ. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J Immunol 1976; 117: 2233-2238.
https://doi.org/10.4049/jimmunol.117.6.2233
57. DRESCH C, LEVERRIER Y, MARVEL J, SHORTMAN K. Development of antigen cross-presentation capacity in dendritic cells. Trends Immunol 2012; 33: 381-388.
https://doi.org/10.1016/j.it.2012.04.009
58. RESTIFO NP, DUDLEY ME, ROSENBERG SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12: 269-281.
https://doi.org/10.1038/nri3191
59. CEBRIAN I, VISENTIN G, BLANCHARD N, JOUVE M, BOBARD A, MOITA C et al. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 2011; 147: 1355-1368.
https://doi.org/10.1016/j.cell.2011.11.021
60. LIN ML, ZHAN Y, PROIETTO AI, PRATO S, WU L, HEATH WR et al. Selective suicide of cross-presenting CD8+ dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci U S A 2008; 105: 3029-3034.
https://doi.org/10.1073/pnas.0712394105
61. DANI A, CHAUDHRY A, MUKHERJEE P, RAJAGOPAL D, BHATIA S, GEORGE A et al. The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J Cell Sci 2004; 117: 4219-4230.
https://doi.org/10.1242/jcs.01288
62. MCDONNELL AM, ROBINSON BW, CURRIE AJ. Tumor antigen cross-presentation and the dendritic cell: where it all begins? Clin Dev Immunol 2010; 2010: 539519.
https://doi.org/10.1155/2010/539519
63. MELERO I, BACH N, CHEN L. Costimulation, tolerance and ignorance of cytolytic T LYMPHOCYTES in immune responses to tumor antigens. Life Sci 1997; 60: 2035-2041.
https://doi.org/10.1016/S0024-3205(96)00686-8
64. KANZLER H, BARRAT FJ, HESSEL EM, COFFMAN RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007; 13: 552-559.
https://doi.org/10.1038/nm1589
65. Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev 2009; 227: 221-233.
https://doi.org/10.1111/j.1600-065X.2008.00731.x
66. COFFMAN RL, SHER A, SEDER RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010; 33: 492-503.
https://doi.org/10.1016/j.immuni.2010.10.002
67. MEDZHITOV R, JANEWAY CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295-298.
https://doi.org/10.1016/S0092-8674(00)80412-2
68. KAWAI T, AKIRA S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1-20.
https://doi.org/10.1196/annals.1443.020
69. BARRAL PM, SARKAR D, SU ZZ, BARBER GN, DESALLE R, RACANIELLO VR et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol Ther 2009; 124: 219-234.
https://doi.org/10.1016/j.pharmthera.2009.06.012
70. NAKHAEI P, GENIN P, CIVAS A, HISCOTT J. RIG-I-like receptors: sensing and responding to RNA virus infection. Semin Immunol 2009; 21: 215-222.
https://doi.org/10.1016/j.smim.2009.05.001
71. NICODEMUS CF, BEREK JS. TLR3 agonists as immunotherapeutic agents. Immunotherapy 2010; 2: 137-140.
https://doi.org/10.2217/imt.10.8
72. HEATH WR, CARBONE FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 2009; 10: 1237-1244.
https://doi.org/10.1038/ni.1822
73. MERAD M, MANZ MG. Dendritic cell homeostasis. Blood 2009; 113: 3418-3427.
https://doi.org/10.1182/blood-2008-12-180646
74. VILLADANGOS JA, SCHNORRER P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 2007; 7: 543-555.
https://doi.org/10.1038/nri2103
75. SHORTMAN K, HEATH WR. The CD8+ dendritic cell subset. Immunol Rev 2010; 234: 18-31.
https://doi.org/10.1111/j.0105-2896.2009.00870.x
76. DUDZIAK D, KAMPHORST AO, HEIDKAMP GF, BUCHHOLZ VR, TRUMPFHELLER C, YAMAZAKI S et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315: 107-111.
https://doi.org/10.1126/science.1136080
77. IYODA T, SHIMOYAMA S, LIU K, OMATSU Y, AKIYAMA Y, MAEDA Y et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 2002; 195: 1289-1302.
https://doi.org/10.1084/jem.20020161
78. SCHNORRER P, BEHRENS GM, WILSON NS, POOLEY JL, SMITH CM, EL-SUKKARI D et al. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc Natl Acad Sci U S A 2006; 103: 10729-10734.
https://doi.org/10.1073/pnas.0601956103
79. WILSON NS, EL-SUKKARI D, BELZ GT, SMITH CM, STEPTOE RJ, HEATH WR et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 2003; 102: 2187-2194.
https://doi.org/10.1182/blood-2003-02-0513
80. HONG L, WEBB TJ, WILKES DS. Dendritic cell-T cell interactions: CD8 alpha alpha expressed on dendritic cells regulates T cell proliferation. Immunol Lett 2007; 108: 174-178.
https://doi.org/10.1016/j.imlet.2006.12.003
81. BEDOUI S, WHITNEY PG, WAITHMAN J, EIDSMO L, WAKIM L, CAMINSCHI I et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009; 10: 488-495.
https://doi.org/10.1038/ni.1724
82. HILDNER K, EDELSON BT, PURTHA WE, DIAMOND M, MATSUSHITA H, KOHYAMA M et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008; 322: 1097-1100.
https://doi.org/10.1126/science.1164206
83. EDELSON BT, KC W, JUANG R, KOHYAMA M, BENOIT LA, KLEKOTKA PA et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med 2010; 207: 823-836.
https://doi.org/10.1084/jem.20091627
84. SCHIAVONI G, MATTEI F, SESTILI P, BORGHI P, VENDITTI M, MORSE HC, 3RD et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 2002; 196: 1415-1425.
https://doi.org/10.1084/jem.20021263
85. TAILOR P, TAMURA T, MORSE HC, 3RD, OZATO K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 2008; 111: 1942-1945.
https://doi.org/10.1182/blood-2007-07-100750
86. ARINA A, TIRAPU I, ALFARO C, RODRIGUEZ-CALVILLO M, MAZZOLINI G, INOGES S et al. Clinical implications of antigen transfer mechanisms from malignant to dendritic cells. exploiting cross-priming. Exp Hematol 2002; 30: 1355-1364.
https://doi.org/10.1016/S0301-472X(02)00956-6
87. MELERO I, ARINA A, MURILLO O, DUBROT J, ALFARO C, PEREZ-GRACIA JL et al. Immunogenic cell death and cross-priming are reaching the clinical immunotherapy arena. Clin Cancer Res 2006; 12: 2385-2689.
https://doi.org/10.1158/1078-0432.CCR-06-0314
88. IDOYAGA J, LUBKIN A, FIORESE C, LAHOUD MH, CAMINSCHI I, HUANG Y et al. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc Natl Acad Sci U S A 2011; 108: 2384-2389.
https://doi.org/10.1073/pnas.1019547108
89. SANCHO D, MOURAO-SA D, JOFFRE OP, SCHULZ O, ROGERS NC, PENNINGTON DJ et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118: 2098-2110.
https://doi.org/10.1172/JCI34584
90. MILLER G, PILLARISETTY VG, SHAH AB, LAHRS S, DEMATTEO RP. Murine Flt3 ligand expands distinct dendritic cells with both tolerogenic and immunogenic properties. J Immunol 2003; 170: 3554-3564.
https://doi.org/10.4049/jimmunol.170.7.3554
91. NAIK SH, PROIETTO AI, WILSON NS, DAKIC A, SCHNORRER P, FUCHSBERGER M et al. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 2005; 174: 6592-6597.
https://doi.org/10.4049/jimmunol.174.11.6592
92. SATHE P, POOLEY J, VREMEC D, MINTERN J, JIN JO, WU L et al. The acquisition of antigen cross-presentation function by newly formed dendritic cells. J Immunol 2011; 186: 5184-5192.
https://doi.org/10.4049/jimmunol.1002683
93. DE BRITO C, TOMKOWIAK M, GHITTONI R, CAUX C, LEVERRIER Y, MARVEL J. CPG promotes cross-presentation of dead cell-associated antigens by pre-CD8alpha+ dendritic cells. J Immunol 2011; 186: 1503-1511.
https://doi.org/10.4049/jimmunol.1001022
94. KURTS C, ROBINSON BW, KNOLLE PA. Cross-priming in health and disease. Nat Rev Immunol 2010; 10: 403-414.
https://doi.org/10.1038/nri2780
95. POOLEY JL, HEATH WR, SHORTMAN K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 2001; 166: 5327-5330.
https://doi.org/10.4049/jimmunol.166.9.5327
96. dEN HAAN JM, BEVAN MJ. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J Exp Med 2002; 196: 817-827.
https://doi.org/10.1084/jem.20020295
97. MORON G, RUEDA P, CASAL I, LECLERC C. CD8alpha- CD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8alpha and CD205 molecules. J Exp Med 2002; 195: 1233-1245.
https://doi.org/10.1084/jem.20011930
98. RUEDL C, STORNI T, LECHNER F, BACHI T, BACHMANN MF. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Eur J Immunol 2002; 32: 818-825.
https://doi.org/10.1002/1521-4141(200203)32:3<818::AID-IMMU818>3.0.CO;2-U
99. BACKER R, van Leeuwen F, Kraal G, den Haan JM. CD8- dendritic cells preferentially cross-present Saccharomyces cerevisiae antigens. Eur J Immunol 2008; 38: 370-380.
https://doi.org/10.1002/eji.200737647
100. ALFARO C, PÉREZ-GRACIA JL, SUAREZ N, RODRÍGUEZ J, FERNÁNDEZ DE SANMAMED M, SANGRO B et al. Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients. J Immunol 2011; 187: 6130-6142.
https://doi.org/10.4049/jimmunol.1102209
101. YAMAZAKI C, SUGIYAMA M, OHTA T, HEMMI H, HAMADA E, SASAKI I et al. Critical Roles of a Dendritic Cell Subset Expressing a Chemokine Receptor, XCR1. J Immunol 2013; 190: 6071-6082.
https://doi.org/10.4049/jimmunol.1202798
102. POULIN LF, SALIO M, GRIESSINGER E, ANJOS-AFONSO F, CRACIUN L, CHEN JL, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207: 1261-1271.
https://doi.org/10.1084/jem.20092618
103. DZIONEK A, FUCHS A, SCHMIDT P, CREMER S, ZYSK M, MILTENYI S et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000; 165: 6037-6046.
https://doi.org/10.4049/jimmunol.165.11.6037
104. BACHEM A, GUTTLER S, HARTUNG E, EBSTEIN F, SCHAEFER M, TANNERT A et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207: 1273-1281.
https://doi.org/10.1084/jem.20100348
105. CONTRERAS V, URIEN C, GUITON R, ALEXANDRE Y, VU MANH TP, ANDRIEU T et al. Existence of CD8alpha-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. J Immunol 2010; 185: 3313-3325.
https://doi.org/10.4049/jimmunol.1000824
106. CROZAT K, GUITON R, CONTRERAS V, FEUILLET V, DUTERTRE CA, VENTRE E et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207: 1283-1292.
https://doi.org/10.1084/jem.20100223
107. JONGBLOED SL, KASSIANOS AJ, MCDONALD KJ, CLARK GJ, JU X, ANGEL CE et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207: 1247-1260.
https://doi.org/10.1084/jem.20092140
108. CAMINSCHI I, PROIETTO AI, AHMET F, KITSOULIS S, SHIN TEH J, LO JC, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 2008; 112: 3264-3273.
https://doi.org/10.1182/blood-2008-05-155176
109. DORNER BG, DORNER MB, ZHOU X, OPITZ C, MORA A, GUTTLER S et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 2009; 31: 823-833.
https://doi.org/10.1016/j.immuni.2009.08.027
110. DALOD M. Professional cross-presenting CD8alpha-type CD141(hi) dendritic cells: we have got you in our skin! Immunity 2012; 37: 3-5.
https://doi.org/10.1016/j.immuni.2012.07.008
111. MITTAG D, PROIETTO AI, LOUDOVARIS T, MANNERING SI, VREMEC D, SHORTMAN K et al. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 2011; 186: 6207-6217.
https://doi.org/10.4049/jimmunol.1002632
112. HANIFFA M, SHIN A, BIGLEY V, MCGOVERN N, TEO P, SEE P et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 2012; 37: 60-73.
https://doi.org/10.1016/j.immuni.2012.04.012
113. SEGURA E, DURAND M, AMIGORENA S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 2013; 210: 1035-1047.
https://doi.org/10.1084/jem.20121103
114. COHN L, CHATTERJEE B, ESSELBORN F, SMED-SORENSEN A, NAKAMURA N, CHALOUNI C et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med 2013; 210: 1049-1063.
https://doi.org/10.1084/jem.20121251
115. SANCHO D, JOFFRE OP, KELLER AM, ROGERS NC, MARTINEZ D, HERNANZ-FALCON P et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 2009; 458: 899-903.
https://doi.org/10.1038/nature07750
116. IBORRA S, IZQUIERDO HM, MARTINEZ-LOPEZ M, BLANCO-MENENDEZ N, REIS E SOUSA C, SANCHO D. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest 2012; 122:1628-1643.
https://doi.org/10.1172/JCI60660
117. ZELENAY S, KELLER AM, WHITNEY PG, SCHRAML BU, DEDDOUCHE S, ROGERS NC et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest 2012; 122: 1615-1627.
https://doi.org/10.1172/JCI60644
118. SANCHO D, REIS E SOUSA C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 2012; 30: 491-529.
https://doi.org/10.1146/annurev-immunol-031210-101352
119. JIANG W, SWIGGARD WJ, HEUFLER C, PENG M, MIRZA A, STEINMAN RM et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995; 375: 151-155.
https://doi.org/10.1038/375151a0
120. HAWIGER D, INABA K, DORSETT Y, GUO M, MAHNKE K, RIVERA M et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769-779.
https://doi.org/10.1084/jem.194.6.769
121. GEIJTENBEEK TB, TORENSMA R, VAN VLIET SJ, VAN DUIJNHOVEN GC, ADEMA GJ, VAN KOOYK Y et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100: 575-585.
https://doi.org/10.1016/S0092-8674(00)80693-5
122. VAN DEN BERG LM, GRINGHUIS SI, GEIJTENBEEK TB. An evolutionary perspective on C-type lectins in infection and immunity. Ann N Y Acad Sci 2012; 1253: 149-158.
https://doi.org/10.1111/j.1749-6632.2011.06392.x
123. PALUCKA K, BANCHEREAU J, MELLMAN I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010; 33: 464-478.
https://doi.org/10.1016/j.immuni.2010.10.007
124. GALLUZZI L, SENOVILLA L, VACCHELLI E, EGGERMONT A, FRIDMAN WH, GALON J et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1: 1111-1134.
https://doi.org/10.4161/onci.21494
125. FINN OJ. Cancer immunology. N Engl J Med 2008; 358: 2704-2715.
https://doi.org/10.1056/NEJMra072739
126. MELIEF CJ. Cancer immunotherapy by dendritic cells. Immunity 2008; 29: 372-383.
https://doi.org/10.1016/j.immuni.2008.08.004
127. DELAMARRE L, MELLMAN I. Harnessing dendritic cells for immunotherapy. Semin Immunol 2011; 23: 2-11.
https://doi.org/10.1016/j.smim.2011.02.001
128. MELERO I, VILE RG, COLOMBO MP. Feeding dendritic cells with tumor antigens: self-service buffet or a la carte? Gene Ther 2000; 7: 1167-1170.
https://doi.org/10.1038/sj.gt.3301234
129. LE BON A, ETCHART N, ROSSMANN C, ASHTON M, HOU S, GEWERT D et al. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 2003; 4: 1009-1015.
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
La revista Anales del Sistema Sanitario de Navarra es publicada por el Departamento de Salud del Gobierno de Navarra (España), quien conserva los derechos patrimoniales (copyright ) sobre el artículo publicado y favorece y permite la difusión del mismo bajo licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (CC BY-SA 4.0). Esta licencia permite copiar, usar, difundir, transmitir y exponer públicamente el artículo, siempre que siempre que se cite la autoría y la publicación inicial en Anales del Sistema Sanitario de Navarra, y se distinga la existencia de esta licencia de uso.


