Inmunoterapia genética con células dendríticas para el tratamiento del cáncer

Autores/as

  • M. Gato
  • T. Liechtenstein
  • I. Blanco-Luquin
  • M. I. Zudaire
  • G. Kochan
  • D. Escors Navarrabiomed-Fundación Miguel Servet

DOI:

https://doi.org/10.23938/ASSN.0077

Palabras clave:

terapia génica. Lentivectores. Inmunología. Células mieloides.

Resumen

Desde comienzos del siglo XX, los científicos han intentado aprovechar las actividades naturales del sistema inmunológico para curar el cáncer. Sin embargo, las inmunoterapias no han dado el resultado clínico que podría haberse esperado. De hecho, lo tratamientos anti-neoplásicos clásicos como la cirugía, la radioterapia y la quimioterapia siguen consistiendo en la primera línea de tratamiento. Aun así, existe un gran número de evidencias experimentales sobre la inmunogenicidad de las células cancerosas. Sin embargo, la activación efectiva de las respuestas T anti-cancerosas depende estrechamente de la presentación eficiente de antígenos tumorales por parte de células presentadoras de antígeno profesionales, como las células dendríticas (dendritic cells, DC). Aunque se han desarrollado un gran número de estrategias para reforzar las funciones de presentación de antígeno de las DC, la inmunoterapia como tratamiento anti-neoplásico todavía no es tan efectiva como esperaríamos de acuerdo con los resultados obtenidos en modelos preclínicos durante las últimas décadas. En este trabajo no pretendemos revisar exhaustivamente la inmunoterapia con DC, un campo ampliamente extenso y tratado en otras revisiones especializadas. Aquí se exponen la experiencias que nuestro grupo ha llevado a cabo durante la última década modificando genéticamente a las DC para mejorar su eficacia anti-tumoral.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Arce, F., Kochan, G., Breckpot, K., Stephenson, H. & Escors, D. Selective Activation of Intracellular Signalling Pathways In Dendritic Cells For Cancer Immunotherapy. Anti-cancer agents in medicinal chemistry 2012; 1: 29-39.

https://doi.org/10.2174/187152012798764679

2. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050-1059.

https://doi.org/10.1038/nm1622

3. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15: 1170-1178.

https://doi.org/10.1038/nm.2028

4. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008; 8: 59-73.

https://doi.org/10.1038/nri2216

5. Ghiringhelli, F., Bruchard, M. & Apetoh, L. Immune effects of 5-fluorouracil: Ambivalence matters. Oncoimmunology 2013; 2, e23139.

https://doi.org/10.4161/onci.23139

6. Escors D. tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy. New Journal of science 2014.

https://doi.org/10.1155/2014/734515

7. Barbacid, M. Oncogenes and human cancer: cause or consequence? Carcinogenesis 1986; 7: 1037-1042.

https://doi.org/10.1093/carcin/7.7.1037

8. Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr Opin Genet Dev 2007; 17: 60-65.

https://doi.org/10.1016/j.gde.2006.12.008

9. Barbacid, M. et al. Cell cycle and cancer: genetic analysis of the role of cyclin-dependent kinases. Cold Spring Harb Symp Quant Biol 2005; 70: 233-240.

https://doi.org/10.1101/sqb.2005.70.005

10. Santos, E. et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 1984; 223: 661-664.

https://doi.org/10.1126/science.6695174

11. 1Iggo, R., Gatter, K., Bartek, J., Lane, D. & Harris, A. L. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 1990; 335: 675-679.

https://doi.org/10.1016/0140-6736(90)90801-B

12. Slamon, D. J. et al. Identification and characterization of the protein encoded by the human N-myc oncogene. Science 232, 768-772 (1986).

https://doi.org/10.1126/science.3008339

13. Lee, W. H. et al. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 1987; 329: 642-645.

https://doi.org/10.1038/329642a0

14. Fitzpatrick, T. B., Lerner, A. B., Calkins, E. & Summerson, W. H. Occurrence of tyrosinase in horse and fish melanomas. Proc Soc Exp Biol Med 1950; 75: 394-398.

https://doi.org/10.3181/00379727-75-18210

15. Pathak, M. A., Riley, F. C. & Fitzpatrick, T. B. Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. J Invest Dermatol 1962; 39: 435-443.

https://doi.org/10.1038/jid.1962.136

16. Brichard, V. et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993; 178: 489-495.

https://doi.org/10.1084/jem.178.2.489

17. Darrow, T. L., Slingluff, C. L., Jr. & Seigler, H. F. The role of HLA class I antigens in recognition of melanoma cells by tumor-specific cytotoxic T lymphocytes. Evidence for shared tumor antigens. J Immunol 1989; 142: 3329-3335.

https://doi.org/10.4049/jimmunol.142.9.3329

18. Topalian, S. L. et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci U S A 1994; 91: 9461-9465.

https://doi.org/10.1073/pnas.91.20.9461

19. Tarhini, A. A. et al. Safety and immunogenicity of vaccination with MART-1 (26-35, 27L), gp100 (209-217, 210M), and tyrosinase (368-376, 370D) in adjuvant with PF-3512676 and GM-CSF in metastatic melanoma. J Immunother 2012; 35: 359-366.

https://doi.org/10.1097/CJI.0b013e31825481fe

20. Ribas, A. et al. Intra-lymph node prime-boost vaccination against Melan A and tyrosinase for the treatment of metastatic melanoma: results of a phase 1 clinical trial. Clin Cancer Res 2011; 17: 2987-2996.

https://doi.org/10.1158/1078-0432.CCR-10-3272

21. Cohen, T., Muller, R. M., Tomita, Y. & Shibahara, S. Nucleotide sequence of the cDNA encoding human tyrosinase-related protein. Nucleic acids research 1990; 18: 2807-2808.

https://doi.org/10.1093/nar/18.9.2807

22. Jackson, I. J. et al. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. Embo J 1992; 11: 527-535.

https://doi.org/10.1002/j.1460-2075.1992.tb05083.x

23. Wang, R. F., Appella, E., Kawakami, Y., Kang, X. & Rosenberg, S. A. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 1996; 184: 2207-2216.

https://doi.org/10.1084/jem.184.6.2207

24. Parkhurst, M. R. et al. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res 1998; 58: 4895-4901.

25. Osen, W. et al. Screening of human tumor antigens for CD4 T cell epitopes by combination of HLA-transgenic mice, recombinant adenovirus and antigen peptide libraries. PLoS ONE 2010; 5: e14137.

https://doi.org/10.1371/journal.pone.0014137

26. Sierro, S. R. et al. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. Eur J Immunol 2011; 41: 2217-2228.

https://doi.org/10.1002/eji.201041235

27. Bronte, V. et al. Genetic vaccination with "self" tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res 2000; 60: 253-258.

28. Gold, P. & Freedman, S. O. Demonstration of Tumor-Specific Antigens in Human Colonic Carcinomata by Immunological Tolerance and Absorption Techniques. J Exp Med 1965; 121: 439-462.

https://doi.org/10.1084/jem.121.3.439

29. Gold, P., Gold, M. & Freedman, S. O. Cellular location of carcinoembryonic antigens of the human digestive system. Cancer Res 1968; 28: 1331-1334.

30. Tsang, K. Y. et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995; 87: 982-990.

https://doi.org/10.1093/jnci/87.13.982

31. Bremers, A. J. et al. The use of Epstein-Barr virus-transformed B lymphocyte cell lines in a peptide-reconstitution assay: identification of CEA-related HLA-A*0301-restricted potential cytotoxic T-lymphocyte epitopes. J Immunother Emphasis Tumor Immunol 1995; 18: 77-85.

https://doi.org/10.1097/00002371-199508000-00001

32. Gameiro, S. R., Jammeh, M. L. & Hodge, J. W. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert review of vaccines 2013; 12: 617-629.

https://doi.org/10.1586/erv.13.40

33. Meek, D. W. & Marcar, L. MAGE-A antigens as targets in tumour therapy. Cancer Lett 2012; 324: 126-132.

https://doi.org/10.1016/j.canlet.2012.05.011

34. Germeau, C. et al. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 2005; 201: 241-248.

https://doi.org/10.1084/jem.20041379

35. Vennegoor, C. et al. A monoclonal antibody specific for cells of the melanocyte lineage. Am J Pathol 1988; 30: 179-192.

36. Bakker, A. B. et al. Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J Exp Med 1994; 179: 1005-1009.

https://doi.org/10.1084/jem.179.3.1005

37. Chen, Y. T. et al. Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28. Cytogenet Cell Genet 1997; 79: 237-240.

https://doi.org/10.1159/000134734

38. Gnjatic, S. et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res 2006; 95: 1-30.

https://doi.org/10.1016/S0065-230X(06)95001-5

39. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917-924.

https://doi.org/10.1200/JCO.2010.32.2537

40. Kawakami, Y. et al. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994; 91: 6458-6462.

https://doi.org/10.1073/pnas.91.14.6458

41. Escors, D. et al. Targeting dendritic cell signalling to regulate the response to immunisation. Blood 2008; 111: 3050-3061.

https://doi.org/10.1182/blood-2007-11-122408

42. Lang, K. S. et al. HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Invest Dermatol 2001; 116: 891-897.

https://doi.org/10.1046/j.1523-1747.2001.01363.x

43. Walker, L. S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A. K. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med 2003; 198: 249-258.

https://doi.org/10.1084/jem.20030315

44. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005; 6: 1219-1227.

https://doi.org/10.1038/ni1265

45. Liechtenstein, T. et al. Immune modulation by genetic modification of dendritic cells with lentiviral vectors. Virus Res 2013.

https://doi.org/10.1016/j.virusres.2013.05.007

46. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 2008; 133: 775-787.

https://doi.org/10.1016/j.cell.2008.05.009

47. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693-1702.

https://doi.org/10.1084/jem.176.6.1693

48. Zhou, L. J. & Tedder, T. F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci U S A 1996; 93: 2588-2592.

https://doi.org/10.1073/pnas.93.6.2588

49. Breckpot, K. & Escors, D. Dendritic Cells for Active Anti-cancer Immunotherapy: Targeting Activation Pathways Through Genetic Modification. Endocrine, metabolic & immune disorders drug targets 2009; 9: 328-343.

https://doi.org/10.2174/187153009789839156

50. Dullaers, M. et al. Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther 2004; 10: 768-779.

https://doi.org/10.1016/j.ymthe.2004.07.017

51. Andreakos, E., Williams, R. O., Wales, J., Foxwell, B. M. & Feldmann, M. Activation of NF-kappaB by the intracellular expression of NF-kappaB-inducing kinase acts as a powerful vaccine adjuvant. Proc Natl Acad Sci U S A 2006; 103: 14459-14464.

https://doi.org/10.1073/pnas.0603493103

52. Karwacz, K. et al. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8(+) T cells. EMBO Mol Med 2011; 3: 581-592.

https://doi.org/10.1002/emmm.201100165

53. Van Lint, S. et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 2012; 72: 1661-1671.

https://doi.org/10.1158/0008-5472.CAN-11-2957

54. Gruber, A., Kan-Mitchell, J., Kuhen, K. L., Mukai, T. & Wong-Staal, F. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000; 96: 1327-1333.

https://doi.org/10.1182/blood.V96.4.1327

55. Dyall, J., Latouche, J. B., Schnell, S. & Sadelain, M. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001; 97: 114-121.

https://doi.org/10.1182/blood.V97.1.114

56. Arrighi, J. F. et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol 2004; 78: 10848-10855.

https://doi.org/10.1128/JVI.78.20.10848-10855.2004

57. Yu, Q., Kovacs, C., Yue, F. Y. & Ostrowski, M. A. The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J Immunol 2004; 172: 6047-6056.

https://doi.org/10.4049/jimmunol.172.10.6047

58. Karwacz, K., Arce, F., Bricogne, C., Kochan, G. & Escors, D. PD-L1 co-stimulation, ligand-induced TCR down-modulation and anti-tumor immunotherapy. Oncoimmunology 2012; 1: 86-88.

https://doi.org/10.4161/onci.1.1.17824

59. Pen, J. J. et al. Modulation of Regulatory T Cell Function by Monocyte-Derived Dendritic Cells Matured through Electroporation with mRNA Encoding CD40 Ligand, Constitutively Active TLR4, and CD70. J Immunol, doi:jimmunol. 2013; 10: 4049.

https://doi.org/10.4049/jimmunol.1201008

60. Klein, C., Bueler, H. & Mulligan, R. C. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000; 191: 1699-1708.

https://doi.org/10.1084/jem.191.10.1699

61. Bodey, B., Bodey, B., Jr., Siegel, S. E. & Kaiser, H. E. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer research 2000; 20: 2665-2676.

62. Gitlitz, B. J. et al. A pilot trial of tumor lysate-loaded dendritic cells for the treatment of metastatic renal cell carcinoma. J Immunother 2003; 26: 412-419.

https://doi.org/10.1097/00002371-200309000-00004

63. Zarour, H. M. & Kirkwood, J. M. Melanoma vaccines: early progress and future promises. Seminars in cutaneous medicine and surgery 2003; 22: 68-75.

https://doi.org/10.1053/sder.2003.50006

64. Junttila, M. R., Li, S. P. & Westermarck, J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. Faseb J 2008; 22: 954-965.

https://doi.org/10.1096/fj.06-7859rev

65. Zhao, Q. et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 2006; 203: 131-140.

https://doi.org/10.1084/jem.20051794

66. Karwacz, K. et al. Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy. J Virol 2009; 83: 3094-3103.

https://doi.org/10.1128/JVI.02519-08

67. Liechtenstein, T. et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology 2014; 3: e29178.

https://doi.org/10.4161/21624011.2014.945378

68. Shin D S and Ribas A. The evolution of checkpoint blockade as a cancer therapy/what's here, what's next? Curr Opin Immunol 2015; 33C: 23-35.

https://doi.org/10.1016/j.coi.2015.01.006

69. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455-2465.

https://doi.org/10.1056/NEJMoa1200694

70. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443-2454.

https://doi.org/10.1056/NEJMoa1200690

Descargas

Publicado

2015-08-30

Cómo citar

1.
Gato M, Liechtenstein T, Blanco-Luquin I, Zudaire MI, Kochan G, Escors D. Inmunoterapia genética con células dendríticas para el tratamiento del cáncer. An Sist Sanit Navar [Internet]. 30 de agosto de 2015 [citado 8 de julio de 2025];38(2):279-87. Disponible en: https://recyt.fecyt.es/index.php/ASSN/article/view/32079

Número

Sección

Revisiones

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.