Frequência cardíaca e níveis de atividade física durante as férias escolares. Um estudo descritivo

Autores

  • Madina Baurzhan Kazakhstan’s School of Public Health (Republic of Kazakhstan)
  • Salim Berkinbayev S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)
  • Kuat Abzaliyev I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)
  • Zhanar Andassova Kazakhstan’s School of Public Health (Republic of Kazakhstan)
  • Yrysbubu Anvarbekova I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)
  • Symbat Abzaliyeva Al Farabi Kazakh National University (Republic of Kazakhstan)
  • Karashash Absatarova Al Farabi Kazakh National University (Republic of Kazakhstan)
  • Shynar Tanabayeva S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)
  • Gulnar Rakhimbekova NJSC «Astana Medical University» (Republic of Kazakhstan)
  • Ildar Fakhradiyev S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

DOI:

https://doi.org/10.47197/retos.v43i0.87966

Palavras-chave:

atividade física, recreio, AFMV, Educação Física

Resumo

Os objetivos deste estudo foram descrever os níveis de atividade física (AF) em escolares durante os recessos sem intervenção, analisá-los de acordo com o gênero e examinar a contribuição desse tipo de recesso nas recomendações sobre intensidade de AF em crianças. Materiais e métodos. A amostra foi composta por 32 alunos (14 meninos, 10,78 ± 0,69; 18 meninas, 10,4 ± 0,80) de um Centro de Ensino Fundamental. A coleta de dados ocorreu durante 8 intervalos e foram utilizados monitores de freqüência cardíaca Polar Team 2. Resultados e discussão. Os resultados mostram diferenças significativas no nível de AF nos valores de intensidade de moderada a vigorosa (AFMV%) dependendo do sexo dos escolares, com os meninos (63,25 ± 23,15%) atingindo valores superiores aos das meninas (43,74 ± 26,00 %). Em relação às recomendações de AF durante os recessos, um maior percentual de meninos (81,33 ± 6,20%) as alcança em relação às meninas (51,95 ± 6,79%). Essas quebras contribuem com 24,79 ± 7,01% para as recomendações de PA em valores diários de AFMV. Conclusões. Os níveis de AFMV em escolares durante o recreio são médio-baixo. Os meninos participam durante o recreio com uma intensidade significativamente maior do que as meninas. É necessário estudar quais variáveis ​​influenciam no aumento dos níveis de AF nos valores de AFMV em meninas, que são mais sedentárias.

Biografias Autor

Madina Baurzhan , Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Salim Berkinbayev , S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

Kuat Abzaliyev , I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

Zhanar Andassova , Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Yrysbubu Anvarbekova , I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

Symbat Abzaliyeva , Al Farabi Kazakh National University (Republic of Kazakhstan)

Al Farabi Kazakh National University (Republic of Kazakhstan)

Karashash Absatarova , Al Farabi Kazakh National University (Republic of Kazakhstan)

Al Farabi Kazakh National University (Republic of Kazakhstan)

Shynar Tanabayeva , S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

Gulnar Rakhimbekova , NJSC «Astana Medical University» (Republic of Kazakhstan)

NJSC «Astana Medical University» (Republic of Kazakhstan)

Ildar Fakhradiyev , S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

Referências

Aengevaeren, V. L., Van Kimmenade, R., Hopman, M., VAN Royen, N., Snider, J. V., Januzzi, J. L., . . . Eijsvogels, T. (2019). Exercise-induced Changes in Soluble ST2 Concentrations in Marathon Runners. Medicine and science in sports and exercise, 51(3), 405–410. doi.org/10.1249/MSS.0000000000001806

Aimo, A., Januzzi, J. L., Bayes-Genis, A., Vergaro, G., Sciarrone, P., Passino, C., & Emdin, M. (2019). Clinical and Prognostic Significance of sST2 in Heart Failure JACC Review Topic of the Week. Journal of the American College of Cardiology, 74(17), 2193-2203. doi.org/10.1016/j.jacc.2019.08.1039

Albert, M. A. (2011). Biomarkers and heart disease. Journal of Clinical Sleep Medicine, 7(5 Suppl), S9-S11. doi.org/10.5664/jcsm.1342

Alevizos, M., Karagkouni, A., Panagiotidou, S., Vasiadi, M., & Theoharides, T. C. (2014). Stress triggers coronary mast cells leading to cardiac events. Annals of Allergy Asthma and Immunology, 112(4), 309-316. doi.org/10.1016/j.anai.2013.09.017

Alexis, O. (2010). Providing best practice in manual pulse measurement. British Journal of Nursing, 19(4), 228-234. doi.org/10.12968/bjon.2010.19.4.46784

Anwer, S., Manzar, M. D., Alghadir, A. H., Salahuddin, M., & Abdul Hameed, U. (2020). Psychometric Analysis of the Perceived Stress Scale Among Healthy University Students. Neuropsychiatric Disease and Treatment, 16, 2389-2396. https://doi.org/10.2147/ndt.s268582

Barbas, I., Fatouros, I. G., Douroudos, I. I., Chatzinikolaou, A., Michailidis, Y., Draganidis, D., . . . Taxildaris, K. (2011). Physiological and performance adaptations of elite Greco-Roman wrestlers during a one-day tournament. European journal of applied physiology, 111(7), 1421–1436. doi.org/10.1007/s00421-010-1761-7

Berg, D. D., Ruff, C. T., & Morrow, D. A. (2021). Biomarkers for Risk Assessment in Atrial Fibrillation. Clinical Chemistry, 67(1), 87-95. doi.org/10.1093/clinchem/hvaa298

Boisot, S., Beede, J., Isakson, S., Chiu, A., Clopton, P., Januzzi, J., . . . Fitzgerald, R. L. (2008). Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. Journal of cardiac failure, 14(9), 732–738. doi.org/10.1016/j.cardfail.2008.06.415

Broch, K., Andreassen, A. K., Ueland, T., Michelsen, A. E., Stueflotten, W., Aukrust, P., . . . Gullestad, L. (2015). Soluble ST2 reflects hemodynamic stress in non-ischemic heart failure. International journal of cardiology, 179, 378–384. doi.org/10.1016/j.ijcard.2014.11.003

Cameli, M., Mondillo, S., Galderisi, M., Mandoli, G. E., Ballo, P., Nistri, S., . . . Agricola, E. (2017). L’ecocardiografia speckle tracking: roadmap per la misurazione e l’utilizzo clinico [Speckle tracking echocardiography: a practical guide]. Giornale italiano di cardiologia, 18(4), 253–269. doi.org/10.1714/2683.27469

Cediel, G., Codina, P., Spitaleri, G., Domingo, M., Santiago-Vacas, E., Lupon, J., & Bayes-Genis, A. (2021). Gender-Related Differences in Heart Failure Biomarkers. Frontiers in Cardiovascular Medicine, 7. doi.org/10.3389/Fcvm.2020.617705

Chen, W., Lin, A., Yu, Y., Zhang, L., Yang, G., Hu, H., & Luo, Y. (2018). Serum Soluble ST2 as a Novel Inflammatory Marker in Acute Ischemic Stroke. Clinical Laboratory, 64(9), 1349-1356. doi.org/10.7754/Clin.Lab.2018.180105

Churchill, T. W., Petek, B. J., Wasfy, M. M., Guseh, J. S., Weiner, R. B., Singh, T. K., . . . Baggish, A. L. (2020). Cardiac structure and function in elite female and male soccer players. JAMA Cardiology. doi.org/10.1001/jamacardio.2020.6088

Cohen, S. (1988). Perceived stress in a probability sample of the United States. The social psychology of health (pp. 31-67). Thousand Oaks, CA, US: Sage Publications, Inc.

Corrado, D., Basso, C., Rizzoli, G., Schiavon, M., & Thiene, G. (2003). Does sports activity enhance the risk of sudden death in adolescents and young adults? Journal of American Colledge of Cardiology, 42(11), 1959-1963. doi.org/10.1016/j.jacc.2003.03.002

Demyanets, S., Kaun, C., Pentz, R., Krychtiuk, K. A., Rauscher, S., Pfaffenberger, S., . . . Wojta, J. (2013). Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. Journal of molecular and cellular cardiology, 60(100), 16–26. doi.org/10.1016/j.yjmcc.2013.03.020

Dickhuth, H. H., Röcker, K., Mayer, F., König, D., & Korsten-Reck, U. (2004). [Endurance training and cardial adaptation (athlete's heart)]. Herz, 29(4), 373-380. doi.org/10.1007/s00059-004-2582-4

Dieplinger, B., Januzzi, J. L., Jr., Steinmair, M., Gabriel, C., Poelz, W., Haltmayer, M., & Mueller, T. (2009). Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma--the Presage ST2 assay. Clinica Chimica Acta, 409(1-2), 33-40. doi.org/10.1016/j.cca.2009.08.010

Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248. doi.org/10.1152/jappl.1974.37.2.247

Drawz, P. E., Beddhu, S., Kramer, H. J., Rakotz, M., Rocco, M. V., & Whelton, P. K. (2020). Blood Pressure Measurement: A KDOQI Perspective. American Journal of Kidney Disease, 75(3), 426-434. doi.org/10.1053/j.ajkd.2019.08.030

Garcia, J., Muñiz, C., Rodriguez, P., & Suarez, M. J. (2016). Comparative Analysis of Sports Practice by Types of Activities. International Journal of Sport Finance, 11(4), 327-348.

Gavrilovic, L., Spasojevic, N., & Dronjak, S. (2012). Modulation of catecholamine-synthesizing enzymes in adrenal medulla and stellate ganglia by treadmill exercise of stressed rats. European journal of applied physiology, 112(3), 1177-1182. doi.org/10.1007/s00421-011-2046-5

Giavarina, D., & Lippi, G. (2017). Blood venous sample collection: Recommendations overview and a checklist to improve quality. Clinical Biochemistry, 50(10-11), 568-573. https://doi.org/10.1016/j.clinbiochem.2017.02.021

González-Boto, R., Salguero, A., Tuero, C., González-Gallego, J., & Márquez, S. (2008). Monitoring the effects of training load changes on stress and recovery in swimmers. Journal of Physiology and Biochemistry, 64(1), 19-26. doi:10.1007/bf03168231

Gustafsson, H., Sagar, S. S., & Stenling, A. (2017). Fear of failure, psychological stress, and burnout among adolescent athletes competing in high level sport. Scandinavian Journal of Medicine and Science in Sports, 27(12), 2091-2102. doi.org/10.1111/sms.12797

Hammadah, M., Alkhoder, A., Al Mheid, I., Wilmot, K., Isakadze, N., Abdulhadi, N., . . . Quyyumi, A. A. (2017). Hemodynamic, catecholamine, vasomotor and vascular responses: Determinants of myocardial ischemia during mental stress. International Journal of Cardiology, 243, 47-53. doi.org/10.1016/j.ijcard.2017.05.093

Hawkins, M. N., Raven, P. B., Snell, P. G., Stray-Gundersen, J., & Levine, B. D. (2007). Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Medicine and Science in Sports and Exercise, 39(1), 103-107. doi.org/10.1249/01.mss.0000241641.75101.64

Holfelder, B., Klotzbier, T. J., Eisele, M., & Schott, N. (2020). Hot and Cool Executive Function in Elite- and Amateur- Adolescent Athletes From Open and Closed Skills Sports. Frontiers in Psychology, 11. doi.org/10.3389/Fpsyg.2020.00694

Howley, E. T. (2001). Type of activity: resistance, aerobic and leisure versus occupational physical activity. Medicine and Science in Sports and Exercise, 33(6), S364-S369. doi.org/10.1097/00005768-200106001-00005

Kakkar, R., & Lee, R. T. (2008). The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews. Drug Discovery, 7(10), 827-840. doi.org/10.1038/nrd2660

Koch, S., Cassel, M., Linné, K., Mayer, F., & Scharhag, J. (2014). ECG and echocardiographic findings in 10-15-year-old elite athletes. European Journal of Preventive Cardiology, 21(6), 774-781. doi.org/10.1177/2047487312462147

Kovacs, R., & Baggish, A. L. (2016). Cardiovascular adaptation in athletes. Trends in Cardiovascular Medicine, 26(1), 46-52. doi.org/10.1016/j.tcm.2015.04.003

Lee, E. H. (2012). Review of the psychometric evidence of the perceived stress scale. Asian Nursing Research, 6(4), 121-127. doi.org/10.1016/j.anr.2012.08.004

Lee, P., Chandel, N. S., & Simon, M. C. (2020). Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 21(5), 268-283. https://doi.org/10.1038/s41580-020-0227-y

Mueller, T., & Jaffe, A. S. (2015). Soluble ST2--analytical considerations. American Journal of Cardiology, 115(7 Suppl), 8b-21b. doi.org/10.1016/j.amjcard.2015.01.035

Nakamura, M., & Sadoshima, J. (2018). Mechanisms of physiological and pathological cardiac hypertrophy. Nature Reviews Cardiology, 15(7), 387-407. doi.org/10.1038/s41569-018-0007-y

Ogilvie, R. P., Everson-Rose, S. A., Longstreth, W. T., Jr., Rodriguez, C. J., Diez-Roux, A. V., & Lutsey, P. L. (2016). Psychosocial Factors and Risk of Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis. Circulation. Heart failure, 9(1), e002243-e002243. doi.org/10.1161/CIRCHEARTFAILURE.115.002243

Pascual-Figal, D. A., & Januzzi, J. L. (2015). The biology of ST2: the International ST2 Consensus Panel. American Journal of Cardiology, 115(7 Suppl), 3b-7b. doi:10.1016/j.amjcard.2015.01.034

Perrone, M. A., Zaninotto, M., Masotti, S., Musetti, V., Padoan, A., Prontera, C., . . . Clerico, A. (2020). The combined measurement of high-sensitivity cardiac troponins and natriuretic peptides: a useful tool for clinicians? Journal of Cardiovascular Medicine, 21(12), 953-963. doi.org/10.2459/Jcm.0000000000001022

Pluim, B. M., Zwinderman, A. H., van der Laarse, A., & van der Wall, E. E. (2000). The athlete's heart. A meta-analysis of cardiac structure and function. Circulation, 101(3), 336-344. doi.org/10.1161/01.cir.101.3.336

Proietti, R., Mapelli, D., Volpe, B., Bartoletti, S., Sagone, A., Dal Bianco, L., & Daliento, L. (2011). Mental stress and ischemic heart disease: evolving awareness of a complex association. Future Cardiology, 7(3), 425-437. doi.org/10.2217/fca.11.13

Quick, S., Waessnig, N. K., Kandler, N., Poitz, D. M., Schoen, S., Ibrahim, K., . . . Speiser, U. (2015). Soluble ST2 and myocardial fibrosis in 3T cardiac magnetic resonance. Scandinavian cardiovascular journal, 49(6), 361–366. doi.org/10.3109/14017431.2015.1076936

Rafanelli, C., Roncuzzi, R., Ottolini, F., & Rigatelli, M. (2007). Psychological factors affecting cardiologic conditions. Adv Psychosom Med, 28, 72-108. https://doi.org/10.1159/000106798

Santos, J. (2018). Increasing running volume elicits hematological changes in trained endurance runners: A case study. Retos,35, 117-120.

Sarvasti, D., Lalenoh, I., Oepangat, E., Purwowiyoto, B. S., Santoso, A., & Romdoni, R. (2020). Cardiovascular Protection Variables Based on Exercise Intensity in Stable Coronary Heart Disease Patients After Coronary Stenting: A Comparative Study. Vascular Health and Risk Management, 16, 257-270. doi.org/10.2147/Vhrm.S259190

Schnell, F. (2019). ECG in sportsmen: Distinguishing the normal from the pathological. Presse Medicale, 48(12), 1393-1400. doi.org/10.1016/j.lpm.2019.07.008

Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R., & Januzzi, J. L. (2009). Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circulation. Heart Failure, 2(4), 311-319. doi.org/10.1161/circheartfailure.108.833707

Sharma, S., Drezner, J. A., Baggish, A., Papadakis, M., Wilson, M. G., Prutkin, J. M., . . . Corrado, D. (2017). International Recommendations for Electrocardiographic Interpretation in Athletes. Journal of American Colledge of Cardiology, 69(8), 1057-1075. doi.org/10.1016/j.jacc.2017.01.015

Sharma, S., Merghani, A., & Mont, L. (2015). Exercise and the heart: the good, the bad, and the ugly. European Heart Journal, 36(23), 1445-1453. doi.org/10.1093/eurheartj/ehv090

Shephard, R. J. (1997). Exercise and relaxation in health promotion. Sports Medicine, 23(4), 211-217. doi.org/10.2165/00007256-199723040-00001

Shevchenko, N. S., Bohmat, L. F., Holovko, T. O., & Demianenko, M. V. (2019). Adaptive capacity of the cardiovascular system in children with rheumatic diseases and comorbid conditions. Pathologia,1(45), 99-105. https://doi.org/10.14739/2310-1237.2019.1.166395

Socrates, T., deFilippi, C., Reichlin, T., Twerenbold, R., Breidhardt, T., Noveanu, M., . . . Mueller, C. (2010). Interleukin family member ST2 and mortality in acute dyspnoea. Journal of internal medicine, 268(5), 493–500. doi.org/10.1111/j.1365-2796.2010.02263.x

Steptoe, A., & Kivimäki, M. (2012). Stress and cardiovascular disease. Natural Reviews. Cardiology, 9(6), 360-370. doi.org/10.1038/nrcardio.2012.45

Oshikawa, K., Tominaga, S., Itoh, K., Takada, T., Suzuki, E., & Gejyo, F. (2007). ST2 gene induced by type 2 helper T cell (Th2) and proinflammatory cytokine stimuli may modulate lung injury and fibrosis. Experimental lung research, 33(2), 81–97. doi.org/10.1080/01902140701198583

van de Schoor, F. R., Aengevaeren, V. L., Hopman, M. T., Oxborough, D. L., George, K. P., Thompson, P. D., & Eijsvogels, T. M. (2016). Myocardial Fibrosis in Athletes. Mayo Clinic Proceedings, 91(11), 1617-1631. doi.org/10.1016/j.mayocp.2016.07.012

Villarreal-Angeles, M., Rodriguez Vela, B., Tapia Martínez, R., Gallegos Sanchez, J., & Moncada-Jimenez, J. (2021). Comparison of psychological constructs in university athletes during a national competition. Retos, 42 , 618-626.

Wallentin, L., Eriksson, N., Olszowka, M., Grammer, T. B., Hagström, E., Held, C., . . . Siegbahn, A. (2021). Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. PLoS medicine, 18(1), e1003513. doi.org/10.1371/journal.pmed.1003513

Wan Nudri, W. D., Wan Abdul Manan, W. M., & Mohamed Rusli, A. (2009). Body mass index and body fat status of men involved in sports, exercise, and sedentary activites. The Malaysian Journal of Medical Sciences, 16(2), 21-26.

Webb, H. E., Rosalky, D. A., McAllister, M. J., Acevedo, E. O., & Kamimori, G. H. (2017). Aerobic fitness impacts sympathoadrenal axis responses to concurrent challenges. European journal of applied physiology, 117(2), 301-313. doi.org/10.1007/s00421-016-3519-3

Weinberg, E. O., Shimpo, M., De Keulenaer, G. W., MacGillivray, C., Tominaga, S., Solomon, S. D., Rouleau, J. L., & Lee, R. T. (2002). Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 106(23), 2961–2966. doi.org/10.1161/01.cir.0000038705.69871.d9

Weinberg, E. O., Shimpo, M., Hurwitz, S., Tominaga, S., Rouleau, J. L., & Lee, R. T. (2003). Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation, 107(5), 721-726. doi.org/10.1161/01.cir.0000047274.66749.fe

Wilbert-Lampen, U., Leistner, D., Greven, S., Pohl, T., Sper, S., Völker, C., . . . Steinbeck, G. (2008). Cardiovascular events during World Cup soccer. The New England journal of medicine, 358(5), 475–483. doi.org/10.1056/NEJMoa0707427

Wirtz, P. H., & von Känel, R. (2017). Psychological Stress, Inflammation, and Coronary Heart Disease. Current Cardiology Reports, 19(11), 111. doi.org/10.1007/s11886-017-0919-x

Downloads

Publicado

2022-01-06

Como Citar

Baurzhan, M., Berkinbayev, S., Abzaliyev, K., Andassova, Z., Anvarbekova, Y., Abzaliyeva, S., Absatarova, K., Tanabayeva, S., Rakhimbekova, G., & Fakhradiyev, I. (2022). Frequência cardíaca e níveis de atividade física durante as férias escolares. Um estudo descritivo. Retos, 43, 428–437. https://doi.org/10.47197/retos.v43i0.87966

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.