Valor pronóstico de ST2 soluble en suero en deportistas profesionales (Prognostic value of serum soluble ST2 in professional athletes)

Autores/as

  • Madina Baurzhan Kazakhstan’s School of Public Health (Republic of Kazakhstan)
  • Salim Berkinbayev S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)
  • Kuat Abzaliyev I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)
  • Zhanar Andassova Kazakhstan’s School of Public Health (Republic of Kazakhstan)
  • Yrysbubu Anvarbekova I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)
  • Symbat Abzaliyeva Al Farabi Kazakh National University (Republic of Kazakhstan)
  • Karashash Absatarova Al Farabi Kazakh National University (Republic of Kazakhstan)
  • Shynar Tanabayeva S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)
  • Gulnar Rakhimbekova NJSC «Astana Medical University» (Republic of Kazakhstan)
  • Ildar Fakhradiyev S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

DOI:

https://doi.org/10.47197/retos.v43i0.87966

Palabras clave:

soluble ST2, biomarcador, hipertrofia cardíaca, estrés, atletas, (solubleST2; biomarker; heart hypertrophy; stress; athletes.)

Resumen

Antecedentes: El valor predictivo del biomarcador ST2 soluble en suero (sST2) en la enfermedad cardiovascular aún no se conoce bien, así como el papel del estrés psicológico en el riesgo de enfermedad cardiovascular. Objetivos: Este estudio tuvo como objetivo determinar la importancia diagnóstica del nivel de sST2 en atletas involucrados en deportes de velocidad-fuerza. Además, también se evaluó y analizó el estrés como factor de riesgo para el desarrollo de patología cardiovascular. Métodos: Se llevó a cabo un estudio prospectivo sobre luchadores grecorromanos en el Centro de Medicina y Rehabilitación del Deporte (Almaty, República de Kazajstán). Todos los participantes (n = 30) eran hombres de entre 20 y 34 años. El grupo de control estaba formado por voluntarios (VO) (n = 30). Se estudiaron los parámetros antropométricos y hemodinámicos de los atletas junto con las pruebas de electrocardiografía (ECG). El nivel de sST2 se determinó antes (BT) e inmediatamente después (AT) del entrenamiento. El nivel de estrés se determinó utilizando la Escala de Estrés Percibido-10 (PSS-10). Resultados: La edad promedio de los deportistas fue de 26,57 ± 3,6 años. La experiencia de formación total fue de 14,57 ± 4,02 años. Según los datos del ECG, se identificaron desviaciones menores de la norma (13,3%) y un ECG anormal (33,3%). Los datos de Echo-CG mostraron cambios "moderados" y "pronunciados" en el 23,3% y el 53,3% de los casos, respectivamente. El nivel de sST2 del grupo VO (337,1 ± 61,8 pg / mL) fue menor que el de BT (548,1 ± 32,6 pg / mL) (p ≤ 0,001),). El nivel de sST2 en AT fue significativamente mayor (830.01 ± 71.6 pg / mL) que en BT (p ≤ 0.001). El nivel medio y alto de estrés entre los deportistas fue del 43,3% y el 56,7% de los casos, respectivamente. El estrés aumentó la probabilidad de desarrollar un ECG claramente anormal (OR = 1,06; IC del 95%: 1,01-1,08; p = 0,02). El nivel de estrés mostró una correlación positiva con el nivel de sST2 (r = 0,752, p = 0,01). La concentración de sST2 y los datos de la ecocardiografía categórica demostraron una correlación positiva dependiente (r = 0,6, p = 0,01). Conclusión: Los niveles de sST2 de los atletas excedieron los umbrales tanto antes como después del entrenamiento. Además, se determinó la relación entre un aumento en los niveles de sST2 y anomalías anormales del ECG y un alto nivel de estrés en los atletas. La concentración de sST2 se asoció con el estrés cardiopulmonar desencadenado por la dosis acumulativa de ejercicio, así como con el estrés psicológico de por vida. Nuestros hallazgos indican que las concentraciones elevadas de sST2 en los atletas pueden usarse como valor predictivo. Sin embargo, se requieren más estudios.

Abstract. Background: The predictive value of serum soluble ST2 (sST2) biomarker for diagnostics of cardiovascular pathologies is still poorly understood as well as the role of psychological stress on the risk of heart disease. Aim: This study aimed at determining the diagnostic significance of the sST2 level in athletes involved in speed-strength sports. In addition, stress as a risk factor for the development of cardiovascular pathology was assessed and analysed as well. Methods: A prospective study on Greco-Roman wrestlers was carried out at the Centre for Sports Medicine and Rehabilitation (Almaty, Republic of Kazakhstan). All participants (n = 30) were males aged 20 to 34 years. The control group consisted of volunteers (VO) (n = 30). Anthropometric and hemodynamic parameters of athletes were studied along with electrocardiography (ECG) and ECG tests. The sST2 level was determined before (BT) and immediately after (AT) training. The stress level was determined using The Perceived Stress Scale-10 (PSS-10). Results: The average age of the athletes was 26.57 ± 3.6 years. The total training experience was 14.57 ± 4.02 years. According to the ECG data, minor deviations from the norm (13.3%) and an abnormal ECG (33.3%) were identified. Echo-CG data showed "moderate" and "pronounced changes" in 23.3% and 53.3% of cases, respectively. The sST2 level of VO (337.1 ± 61.8 pg / mL) was lower than that of BT (548.1 ± 32.6 pg / mL) (p ≤ 0.001). The sST2 level of AT, it was significantly higher (830.01 ± 71.6 pg / mL) than BT (p ≤ 0.001). The average and high level of stress among athletes was in 43.3% and 56.7% of cases, respectively. Stress increased the likelihood of developing distinctly abnormal ECG (OR = 1.06, 95% CI 1.01–1.08; p = 0.02). The stress level showed a positive correlation with the sST2 level (r = 0.752, p = 0.01). The sST2 concentration and categorical echocardiography data demonstrated a dependent positive correlation (r = 0.6, p = 0.01). Conclusions: Athletes' sST2 levels exceeded thresholds both before and after training. Moreover, the relationship between an increase in sST2 levels and abnormal ECG abnormalities and a high level of stress in athletes was determined. sST2 concentration was associated with cardio-pulmonary stress triggered by the cumulative exercise dose as well as with lifelong psychological stress. Our findings indicate that the elevated sST2 concentrations in athletes could be used as the predictive value. However, clinical relevance and results validity require further intensive studies.

Biografía del autor/a

Madina Baurzhan, Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Salim Berkinbayev, S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

Kuat Abzaliyev, I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

Zhanar Andassova, Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Kazakhstan’s School of Public Health (Republic of Kazakhstan)

Yrysbubu Anvarbekova, I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

I.K. Akhunbaev Kyrgyz state medical academy (Republic of Kyrgystan)

Symbat Abzaliyeva, Al Farabi Kazakh National University (Republic of Kazakhstan)

Al Farabi Kazakh National University (Republic of Kazakhstan)

Karashash Absatarova, Al Farabi Kazakh National University (Republic of Kazakhstan)

Al Farabi Kazakh National University (Republic of Kazakhstan)

Shynar Tanabayeva, S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

Gulnar Rakhimbekova, NJSC «Astana Medical University» (Republic of Kazakhstan)

NJSC «Astana Medical University» (Republic of Kazakhstan)

Ildar Fakhradiyev, S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

S.D. Asfendiyarov Kazakh National Medical University (Republic of Kazakhstan)

Citas

Aengevaeren, V. L., Van Kimmenade, R., Hopman, M., VAN Royen, N., Snider, J. V., Januzzi, J. L., . . . Eijsvogels, T. (2019). Exercise-induced Changes in Soluble ST2 Concentrations in Marathon Runners. Medicine and science in sports and exercise, 51(3), 405–410. doi.org/10.1249/MSS.0000000000001806

Aimo, A., Januzzi, J. L., Bayes-Genis, A., Vergaro, G., Sciarrone, P., Passino, C., & Emdin, M. (2019). Clinical and Prognostic Significance of sST2 in Heart Failure JACC Review Topic of the Week. Journal of the American College of Cardiology, 74(17), 2193-2203. doi.org/10.1016/j.jacc.2019.08.1039

Albert, M. A. (2011). Biomarkers and heart disease. Journal of Clinical Sleep Medicine, 7(5 Suppl), S9-S11. doi.org/10.5664/jcsm.1342

Alevizos, M., Karagkouni, A., Panagiotidou, S., Vasiadi, M., & Theoharides, T. C. (2014). Stress triggers coronary mast cells leading to cardiac events. Annals of Allergy Asthma and Immunology, 112(4), 309-316. doi.org/10.1016/j.anai.2013.09.017

Alexis, O. (2010). Providing best practice in manual pulse measurement. British Journal of Nursing, 19(4), 228-234. doi.org/10.12968/bjon.2010.19.4.46784

Anwer, S., Manzar, M. D., Alghadir, A. H., Salahuddin, M., & Abdul Hameed, U. (2020). Psychometric Analysis of the Perceived Stress Scale Among Healthy University Students. Neuropsychiatric Disease and Treatment, 16, 2389-2396. https://doi.org/10.2147/ndt.s268582

Barbas, I., Fatouros, I. G., Douroudos, I. I., Chatzinikolaou, A., Michailidis, Y., Draganidis, D., . . . Taxildaris, K. (2011). Physiological and performance adaptations of elite Greco-Roman wrestlers during a one-day tournament. European journal of applied physiology, 111(7), 1421–1436. doi.org/10.1007/s00421-010-1761-7

Berg, D. D., Ruff, C. T., & Morrow, D. A. (2021). Biomarkers for Risk Assessment in Atrial Fibrillation. Clinical Chemistry, 67(1), 87-95. doi.org/10.1093/clinchem/hvaa298

Boisot, S., Beede, J., Isakson, S., Chiu, A., Clopton, P., Januzzi, J., . . . Fitzgerald, R. L. (2008). Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. Journal of cardiac failure, 14(9), 732–738. doi.org/10.1016/j.cardfail.2008.06.415

Broch, K., Andreassen, A. K., Ueland, T., Michelsen, A. E., Stueflotten, W., Aukrust, P., . . . Gullestad, L. (2015). Soluble ST2 reflects hemodynamic stress in non-ischemic heart failure. International journal of cardiology, 179, 378–384. doi.org/10.1016/j.ijcard.2014.11.003

Cameli, M., Mondillo, S., Galderisi, M., Mandoli, G. E., Ballo, P., Nistri, S., . . . Agricola, E. (2017). L’ecocardiografia speckle tracking: roadmap per la misurazione e l’utilizzo clinico [Speckle tracking echocardiography: a practical guide]. Giornale italiano di cardiologia, 18(4), 253–269. doi.org/10.1714/2683.27469

Cediel, G., Codina, P., Spitaleri, G., Domingo, M., Santiago-Vacas, E., Lupon, J., & Bayes-Genis, A. (2021). Gender-Related Differences in Heart Failure Biomarkers. Frontiers in Cardiovascular Medicine, 7. doi.org/10.3389/Fcvm.2020.617705

Chen, W., Lin, A., Yu, Y., Zhang, L., Yang, G., Hu, H., & Luo, Y. (2018). Serum Soluble ST2 as a Novel Inflammatory Marker in Acute Ischemic Stroke. Clinical Laboratory, 64(9), 1349-1356. doi.org/10.7754/Clin.Lab.2018.180105

Churchill, T. W., Petek, B. J., Wasfy, M. M., Guseh, J. S., Weiner, R. B., Singh, T. K., . . . Baggish, A. L. (2020). Cardiac structure and function in elite female and male soccer players. JAMA Cardiology. doi.org/10.1001/jamacardio.2020.6088

Cohen, S. (1988). Perceived stress in a probability sample of the United States. The social psychology of health (pp. 31-67). Thousand Oaks, CA, US: Sage Publications, Inc.

Corrado, D., Basso, C., Rizzoli, G., Schiavon, M., & Thiene, G. (2003). Does sports activity enhance the risk of sudden death in adolescents and young adults? Journal of American Colledge of Cardiology, 42(11), 1959-1963. doi.org/10.1016/j.jacc.2003.03.002

Demyanets, S., Kaun, C., Pentz, R., Krychtiuk, K. A., Rauscher, S., Pfaffenberger, S., . . . Wojta, J. (2013). Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. Journal of molecular and cellular cardiology, 60(100), 16–26. doi.org/10.1016/j.yjmcc.2013.03.020

Dickhuth, H. H., Röcker, K., Mayer, F., König, D., & Korsten-Reck, U. (2004). [Endurance training and cardial adaptation (athlete's heart)]. Herz, 29(4), 373-380. doi.org/10.1007/s00059-004-2582-4

Dieplinger, B., Januzzi, J. L., Jr., Steinmair, M., Gabriel, C., Poelz, W., Haltmayer, M., & Mueller, T. (2009). Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma--the Presage ST2 assay. Clinica Chimica Acta, 409(1-2), 33-40. doi.org/10.1016/j.cca.2009.08.010

Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248. doi.org/10.1152/jappl.1974.37.2.247

Drawz, P. E., Beddhu, S., Kramer, H. J., Rakotz, M., Rocco, M. V., & Whelton, P. K. (2020). Blood Pressure Measurement: A KDOQI Perspective. American Journal of Kidney Disease, 75(3), 426-434. doi.org/10.1053/j.ajkd.2019.08.030

Garcia, J., Muñiz, C., Rodriguez, P., & Suarez, M. J. (2016). Comparative Analysis of Sports Practice by Types of Activities. International Journal of Sport Finance, 11(4), 327-348.

Gavrilovic, L., Spasojevic, N., & Dronjak, S. (2012). Modulation of catecholamine-synthesizing enzymes in adrenal medulla and stellate ganglia by treadmill exercise of stressed rats. European journal of applied physiology, 112(3), 1177-1182. doi.org/10.1007/s00421-011-2046-5

Giavarina, D., & Lippi, G. (2017). Blood venous sample collection: Recommendations overview and a checklist to improve quality. Clinical Biochemistry, 50(10-11), 568-573. https://doi.org/10.1016/j.clinbiochem.2017.02.021

González-Boto, R., Salguero, A., Tuero, C., González-Gallego, J., & Márquez, S. (2008). Monitoring the effects of training load changes on stress and recovery in swimmers. Journal of Physiology and Biochemistry, 64(1), 19-26. doi:10.1007/bf03168231

Gustafsson, H., Sagar, S. S., & Stenling, A. (2017). Fear of failure, psychological stress, and burnout among adolescent athletes competing in high level sport. Scandinavian Journal of Medicine and Science in Sports, 27(12), 2091-2102. doi.org/10.1111/sms.12797

Hammadah, M., Alkhoder, A., Al Mheid, I., Wilmot, K., Isakadze, N., Abdulhadi, N., . . . Quyyumi, A. A. (2017). Hemodynamic, catecholamine, vasomotor and vascular responses: Determinants of myocardial ischemia during mental stress. International Journal of Cardiology, 243, 47-53. doi.org/10.1016/j.ijcard.2017.05.093

Hawkins, M. N., Raven, P. B., Snell, P. G., Stray-Gundersen, J., & Levine, B. D. (2007). Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Medicine and Science in Sports and Exercise, 39(1), 103-107. doi.org/10.1249/01.mss.0000241641.75101.64

Holfelder, B., Klotzbier, T. J., Eisele, M., & Schott, N. (2020). Hot and Cool Executive Function in Elite- and Amateur- Adolescent Athletes From Open and Closed Skills Sports. Frontiers in Psychology, 11. doi.org/10.3389/Fpsyg.2020.00694

Howley, E. T. (2001). Type of activity: resistance, aerobic and leisure versus occupational physical activity. Medicine and Science in Sports and Exercise, 33(6), S364-S369. doi.org/10.1097/00005768-200106001-00005

Kakkar, R., & Lee, R. T. (2008). The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nature Reviews. Drug Discovery, 7(10), 827-840. doi.org/10.1038/nrd2660

Koch, S., Cassel, M., Linné, K., Mayer, F., & Scharhag, J. (2014). ECG and echocardiographic findings in 10-15-year-old elite athletes. European Journal of Preventive Cardiology, 21(6), 774-781. doi.org/10.1177/2047487312462147

Kovacs, R., & Baggish, A. L. (2016). Cardiovascular adaptation in athletes. Trends in Cardiovascular Medicine, 26(1), 46-52. doi.org/10.1016/j.tcm.2015.04.003

Lee, E. H. (2012). Review of the psychometric evidence of the perceived stress scale. Asian Nursing Research, 6(4), 121-127. doi.org/10.1016/j.anr.2012.08.004

Lee, P., Chandel, N. S., & Simon, M. C. (2020). Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature Reviews Molecular Cell Biology, 21(5), 268-283. https://doi.org/10.1038/s41580-020-0227-y

Mueller, T., & Jaffe, A. S. (2015). Soluble ST2--analytical considerations. American Journal of Cardiology, 115(7 Suppl), 8b-21b. doi.org/10.1016/j.amjcard.2015.01.035

Nakamura, M., & Sadoshima, J. (2018). Mechanisms of physiological and pathological cardiac hypertrophy. Nature Reviews Cardiology, 15(7), 387-407. doi.org/10.1038/s41569-018-0007-y

Ogilvie, R. P., Everson-Rose, S. A., Longstreth, W. T., Jr., Rodriguez, C. J., Diez-Roux, A. V., & Lutsey, P. L. (2016). Psychosocial Factors and Risk of Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis. Circulation. Heart failure, 9(1), e002243-e002243. doi.org/10.1161/CIRCHEARTFAILURE.115.002243

Pascual-Figal, D. A., & Januzzi, J. L. (2015). The biology of ST2: the International ST2 Consensus Panel. American Journal of Cardiology, 115(7 Suppl), 3b-7b. doi:10.1016/j.amjcard.2015.01.034

Perrone, M. A., Zaninotto, M., Masotti, S., Musetti, V., Padoan, A., Prontera, C., . . . Clerico, A. (2020). The combined measurement of high-sensitivity cardiac troponins and natriuretic peptides: a useful tool for clinicians? Journal of Cardiovascular Medicine, 21(12), 953-963. doi.org/10.2459/Jcm.0000000000001022

Pluim, B. M., Zwinderman, A. H., van der Laarse, A., & van der Wall, E. E. (2000). The athlete's heart. A meta-analysis of cardiac structure and function. Circulation, 101(3), 336-344. doi.org/10.1161/01.cir.101.3.336

Proietti, R., Mapelli, D., Volpe, B., Bartoletti, S., Sagone, A., Dal Bianco, L., & Daliento, L. (2011). Mental stress and ischemic heart disease: evolving awareness of a complex association. Future Cardiology, 7(3), 425-437. doi.org/10.2217/fca.11.13

Quick, S., Waessnig, N. K., Kandler, N., Poitz, D. M., Schoen, S., Ibrahim, K., . . . Speiser, U. (2015). Soluble ST2 and myocardial fibrosis in 3T cardiac magnetic resonance. Scandinavian cardiovascular journal, 49(6), 361–366. doi.org/10.3109/14017431.2015.1076936

Rafanelli, C., Roncuzzi, R., Ottolini, F., & Rigatelli, M. (2007). Psychological factors affecting cardiologic conditions. Adv Psychosom Med, 28, 72-108. https://doi.org/10.1159/000106798

Santos, J. (2018). Increasing running volume elicits hematological changes in trained endurance runners: A case study. Retos,35, 117-120.

Sarvasti, D., Lalenoh, I., Oepangat, E., Purwowiyoto, B. S., Santoso, A., & Romdoni, R. (2020). Cardiovascular Protection Variables Based on Exercise Intensity in Stable Coronary Heart Disease Patients After Coronary Stenting: A Comparative Study. Vascular Health and Risk Management, 16, 257-270. doi.org/10.2147/Vhrm.S259190

Schnell, F. (2019). ECG in sportsmen: Distinguishing the normal from the pathological. Presse Medicale, 48(12), 1393-1400. doi.org/10.1016/j.lpm.2019.07.008

Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R., & Januzzi, J. L. (2009). Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circulation. Heart Failure, 2(4), 311-319. doi.org/10.1161/circheartfailure.108.833707

Sharma, S., Drezner, J. A., Baggish, A., Papadakis, M., Wilson, M. G., Prutkin, J. M., . . . Corrado, D. (2017). International Recommendations for Electrocardiographic Interpretation in Athletes. Journal of American Colledge of Cardiology, 69(8), 1057-1075. doi.org/10.1016/j.jacc.2017.01.015

Sharma, S., Merghani, A., & Mont, L. (2015). Exercise and the heart: the good, the bad, and the ugly. European Heart Journal, 36(23), 1445-1453. doi.org/10.1093/eurheartj/ehv090

Shephard, R. J. (1997). Exercise and relaxation in health promotion. Sports Medicine, 23(4), 211-217. doi.org/10.2165/00007256-199723040-00001

Shevchenko, N. S., Bohmat, L. F., Holovko, T. O., & Demianenko, M. V. (2019). Adaptive capacity of the cardiovascular system in children with rheumatic diseases and comorbid conditions. Pathologia,1(45), 99-105. https://doi.org/10.14739/2310-1237.2019.1.166395

Socrates, T., deFilippi, C., Reichlin, T., Twerenbold, R., Breidhardt, T., Noveanu, M., . . . Mueller, C. (2010). Interleukin family member ST2 and mortality in acute dyspnoea. Journal of internal medicine, 268(5), 493–500. doi.org/10.1111/j.1365-2796.2010.02263.x

Steptoe, A., & Kivimäki, M. (2012). Stress and cardiovascular disease. Natural Reviews. Cardiology, 9(6), 360-370. doi.org/10.1038/nrcardio.2012.45

Oshikawa, K., Tominaga, S., Itoh, K., Takada, T., Suzuki, E., & Gejyo, F. (2007). ST2 gene induced by type 2 helper T cell (Th2) and proinflammatory cytokine stimuli may modulate lung injury and fibrosis. Experimental lung research, 33(2), 81–97. doi.org/10.1080/01902140701198583

van de Schoor, F. R., Aengevaeren, V. L., Hopman, M. T., Oxborough, D. L., George, K. P., Thompson, P. D., & Eijsvogels, T. M. (2016). Myocardial Fibrosis in Athletes. Mayo Clinic Proceedings, 91(11), 1617-1631. doi.org/10.1016/j.mayocp.2016.07.012

Villarreal-Angeles, M., Rodriguez Vela, B., Tapia Martínez, R., Gallegos Sanchez, J., & Moncada-Jimenez, J. (2021). Comparison of psychological constructs in university athletes during a national competition. Retos, 42 , 618-626.

Wallentin, L., Eriksson, N., Olszowka, M., Grammer, T. B., Hagström, E., Held, C., . . . Siegbahn, A. (2021). Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. PLoS medicine, 18(1), e1003513. doi.org/10.1371/journal.pmed.1003513

Wan Nudri, W. D., Wan Abdul Manan, W. M., & Mohamed Rusli, A. (2009). Body mass index and body fat status of men involved in sports, exercise, and sedentary activites. The Malaysian Journal of Medical Sciences, 16(2), 21-26.

Webb, H. E., Rosalky, D. A., McAllister, M. J., Acevedo, E. O., & Kamimori, G. H. (2017). Aerobic fitness impacts sympathoadrenal axis responses to concurrent challenges. European journal of applied physiology, 117(2), 301-313. doi.org/10.1007/s00421-016-3519-3

Weinberg, E. O., Shimpo, M., De Keulenaer, G. W., MacGillivray, C., Tominaga, S., Solomon, S. D., Rouleau, J. L., & Lee, R. T. (2002). Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 106(23), 2961–2966. doi.org/10.1161/01.cir.0000038705.69871.d9

Weinberg, E. O., Shimpo, M., Hurwitz, S., Tominaga, S., Rouleau, J. L., & Lee, R. T. (2003). Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation, 107(5), 721-726. doi.org/10.1161/01.cir.0000047274.66749.fe

Wilbert-Lampen, U., Leistner, D., Greven, S., Pohl, T., Sper, S., Völker, C., . . . Steinbeck, G. (2008). Cardiovascular events during World Cup soccer. The New England journal of medicine, 358(5), 475–483. doi.org/10.1056/NEJMoa0707427

Wirtz, P. H., & von Känel, R. (2017). Psychological Stress, Inflammation, and Coronary Heart Disease. Current Cardiology Reports, 19(11), 111. doi.org/10.1007/s11886-017-0919-x

Descargas

Publicado

2022-01-06

Cómo citar

Baurzhan, M., Berkinbayev, S., Abzaliyev, K., Andassova, Z., Anvarbekova, Y., Abzaliyeva, S., Absatarova, K., Tanabayeva, S., Rakhimbekova, G., & Fakhradiyev, I. (2022). Valor pronóstico de ST2 soluble en suero en deportistas profesionales (Prognostic value of serum soluble ST2 in professional athletes). Retos, 43, 428–437. https://doi.org/10.47197/retos.v43i0.87966

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas