O treino regular em bicicleta ergonómica de alta intensidade é eficaz para reduzir o IMC, a percentagem de gordura corporal e a HbA1c e melhorar a massa muscular em doentes com diabetes tipo 2
DOI:
https://doi.org/10.47197/retos.v62.110777Palavras-chave:
Estilo de vida saudável, saúde metabólica, exercício regular, sensibilidade à insulina, diabetes tipo 2Resumo
Este estudo tem como objetivo examinar os efeitos do treino em bicicleta estática de alta intensidade em quatro parâmetros chave cruciais para o controlo da diabetes tipo 2 (DT2): índice de massa corporal (IMC), percentagem de gordura corporal, hemoglobina A1C (HbA1c) e massa muscular. Um total de 24 doentes com diabetes tipo 2, entre os 41 e os 65 anos, participaram no estúdio e participaram numa intervenção de treino em ergociclo de alta intensidade, realizada três vezes por semana durante duas semanas. Observe parâmetros como HbA1c, IMC, PBF e SM antes e depois da intervenção. As técnicas de análise de dados incluem testes para amostras emparelhadas e testes para amostras independentes com um nível de significância de 5%. Os resultados indicam uma redução significativa da HbA1c, IMC e PBF, bem como um aumento significativo da SM antes e depois da intervenção de treino em bicicleta ergo de alta intensidade (p ≤ 0,05). Além disso, observámos uma redução do ∆-HbA1c, ∆-IMC, ∆-PBF e um aumento do ∆-SM entre grupos (p ≤ 0,05). Estes resultados demonstram que o treino regular em bicicleta ergo de alta intensidade é significativamente eficaz para reduzir o IMC, a percentagem de gordura corporal e os níveis de HbA1c, ao mesmo tempo que aumenta a massa muscular em doentes com diabetes tipo 2. Este resultado fornece evidente A sólida base de que o treino em ergociclo de alta intensidade pode ser utilizado como modalidade para melhorar a resistência à insulina em doentes com diabetes tipo 2.
Referências
Alhassani, R. Y., Bagadood, R. M., Balubaid, R. N., Barno, H. I., Alahmadi, M. O., & Ayoub, N. A. (2021). Drug Therapies Affecting Renal Function: An Overview. Cureus, 13(11). https://doi.org/10.7759/cureus.19924.
Al-Rawaf, H. A., Gabr, S. A., Iqbal, A., & Alghadir, A. H. (2023). High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. Medicina (Kaunas, Lithuania), 59(7), 1320. https://doi.org/10.3390/medicina59071320.
American Diabetes Association (ADA) Professional Practice Committee (2024). 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes care, 47(Suppl 1), S20–S42. https://doi.org/10.2337/dc24-S002.
Aneis, Y., Elsisi, H., & Mounir, K. (2015). Impact of high-intensity interval training on HbA1c in patients with type 2 diabetes mellitus. Bulletin of Faculty of Physical Therapy, 20(2), 168. https://doi.org/10.4103/1110-6611.174710.
Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International journal of environmental research and public health, 18(13), 7201. https://doi.org/10.3390/ijerph18137201.
Australian Institute of Health and Welfare (AIHW). (2024). Diabetes: Australian facts. Retrieved from https://www.aihw.gov.au/reports/diabetes/diabetes.
Cannata, F., Vadalà, G., Russo, F., Papalia, R., Napoli, N., & Pozzilli, P. (2020). Beneficial Effects of Physical Activity in Diabetic Patients. Journal of Functional Morphology and Kinesiology, 5(3). https://doi.org/10.3390/jfmk5030070.
Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: A review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7-23. https://doi.org/10.1007/s00125-016-4106-1.
Cavalli, N. P., de Mello, M. B., Righi, N. C., Schuch, F. B., Signori, L. U., & da Silva, A. M. V. (2024). Effects of high-intensity interval training and its different protocols on lipid profile and glycaemic control in type 2 diabetes: A meta-analysis. Journal of sports sciences, 42(4), 333–349. https://doi.org/10.1080/02640414.2024.2330232.
Chou, Y. H., Cheng, Y. Y., Nfor, O. N., Chen, P. H., Chen, C. H., Chen, H. L., Chang, B. J., Tantoh, D. M., Huang, C. N., & Liaw, Y. P. (2022). Effects of aerobic and resistance exercise on glycosylated hemoglobin (HbA1c) concentrations in non-diabetic Taiwanese individuals based on the waist-hip ratio. PloS one, 17(5), e0267387. https://doi.org/10.1371/journal.pone.0267387
Crawford, A. L., & Laiteerapong, N. (2024). Type 2 Diabetes. Annals of internal medicine, 177(6), ITC81–ITC96. https://doi.org/10.7326/AITC202406180.
da Silva, D. E., Grande, A. J., Roever, L., Tse, G., Liu, T., Biondi-Zoccai, G., & de Farias, J. M. (2019). High-Intensity Interval Training in Patients with Type 2 Diabetes Mellitus: a Systematic Review. Current atherosclerosis reports, 21(2), 8. https://doi.org/10.1007/s11883-019-0767-9.
de Mello, M. B., Righi, N. C., Schuch, F. B., Signori, L. U., & da Silva, A. M. V. (2022). Effect of high-intensity interval training protocols on VO2max and HbA1c level in people with type 2 diabetes: A systematic review and meta-analysis. Annals of physical and rehabilitation medicine, 65(5), 101586. https://doi.org/10.1016/j.rehab.2021.101586.
de Oliveira Teles, G., da Silva, C. S., Rezende, V. R., & Rebelo, A. C. S. (2022). Acute Effects of High-Intensity Interval Training on Diabetes Mellitus: A Systematic Review. International journal of environmental research and public health, 19(12), 7049. https://doi.org/10.3390/ijerph19127049.
Deng, W., Zhao, L., Chen, C., Ren, Z., Jing, Y., Qiu, J., & Liu, D. (2024). National burden and risk factors of diabetes mellitus in China from 1990 to 2021: Results from the Global Burden of Disease study 2021. Journal of Diabetes, 16(10), e70012. https://doi.org/10.1111/1753-0407.70012.
Durrer, C., Francois, M., Neudorf, H., & Little, J. P. (2017). Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. American journal of physiology. Regulatory, integrative and comparative physiology, 312(4), R529–R538. https://doi.org/10.1152/ajpregu.00348.2016.
Eid, S. A., Elzinga, S. E., Kim, B., Rumora, A. E., Hayes, J. M., Carter, A., Pacut, C., Allouch, A. M., Koubek, E. J., & Feldman, E. L. (2024). High-intensity interval training, caloric restriction, or their combination have beneficial effects on metabolically acquired peripheral neuropathy. Diabetes, db230997. Advance online publication. https://doi.org/10.2337/db23-0997.
Feng, J., Zhang, Q., Chen, B., Chen, J., Wang, W., Hu, Y., Yu, J., & Huang, H. (2024). Effects of high-intensity intermittent exercise on glucose and lipid metabolism in type 2 diabetes patients: a systematic review and meta-analysis. Frontiers in endocrinology, 15, 1360998. https://doi.org/10.3389/fendo.2024.1360998.
Fianu, A., Jégo, S., Révillion, C., Lenclume, V., Neufcourt, L., Viale, F., Bouscaren, N., & Cubizolles, S. (2024). Determinants of adult sedentary behavior and physical inactivity for the primary prevention of diabetes in historically disadvantaged communities: A representative cross-sectional population-based study from Reunion Island. PLOS ONE, 19(8). https://doi.org/10.1371/journal.pone.0308650.
Francois, M. E., & Little, J. P. (2015). Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes spectrum : a publication of the American Diabetes Association, 28(1), 39–44. https://doi.org/10.2337/diaspect.28.1.39.
Fu, L., Cheng, H., Xiong, J., Xiao, P., Shan, X., Li, Y., Li, Y., Zhao, X., & Mi, J. (2024). Mediating role of inflammatory biomarkers in the causal effect of body composition on glycaemic traits and type 2 diabetes. Diabetes, obesity & metabolism, 26(11), 5444–5454. https://doi.org/10.1111/dom.15923.
Gallo, G., Desideri, G., & Savoia, C. (2024). Update on Obesity and Cardiovascular Risk: From Pathophysiology to Clinical Management. Nutrients, 16(16), 2781. https://doi.org/10.3390/nu16162781.
Gaweł, E., Hall, B., Siatkowski, S., Grabowska, A., & Zwierzchowska, A. (2024). The Combined Effects of High-Intensity Interval Exercise Training and Dietary Supplementation on Reduction of Body Fat in Adults with Overweight and Obesity: A Systematic Review. Nutrients, 16(3). https://doi.org/10.3390/nu16030355.
Guo, H., Wan, C., Zhu, J., Jiang, X., & Li, S. (2024). Association of systemic immune-inflammation index with insulin resistance and prediabetes: a cross-sectional study. Frontiers in endocrinology, 15, 1377792. https://doi.org/10.3389/fendo.2024.1377792.
Haines, M. S., Dichtel, L. E., Santoso, K., Torriani, M., Miller, K. K., & Bredella, M. A. (2020). Association between muscle mass and insulin sensitivity independent of detrimental adipose depots in young adults with overweight/obesity. International Journal of Obesity, 44(9), 1851-1858. https://doi.org/10.1038/s41366-020-0590-y.
Hossain, M. J., & Islam, M. R. (2024). Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Science Reports, 7(3). https://doi.org/10.1002/hsr2.2004.
Hwang, C. L., Lim, J., Yoo, J. K., Kim, H. K., Hwang, M. H., Handberg, E. M., Petersen, J. W., Holmer, B. J., Leey Casella, J. A., Cusi, K., & Christou, D. D. (2019). Effect of all-extremity high-intensity interval training vs. moderate-intensity continuous training on aerobic fitness in middle-aged and older adults with type 2 diabetes: A randomized controlled trial. Experimental gerontology, 116, 46–53. https://doi.org/10.1016/j.exger.2018.12.013.
International Diabetes Federation (IDF). (2023). Diabetes Facts & figures. International Diabetes Federation. https://idf.org/about-diabetes/diabetes-facts-figures/.
Jiang, L., Zhang, Y., Wang, Z., & Wang, Y. (2024). Acute interval running induces greater excess post-exercise oxygen consumption and lipid oxidation than isocaloric continuous running in men with obesity. Scientific reports, 14(1), 9178. https://doi.org/10.1038/s41598-024-59893-9.
Kakoti, B. B., Alom, S., Deka, K., & Halder, R. K. (2024). AMPK pathway: an emerging target to control diabetes mellitus and its related complications. Journal of diabetes and metabolic disorders, 23(1), 441–459. https://doi.org/10.1007/s40200-024-01420-8.
Lazić, A., Stanković, D., Trajković, N., & Cadenas-Sanchez, C. (2024). Effects of HIIT Interventions on Cardiorespiratory Fitness and Glycemic Parameters in Adults with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.), 10.1007/s40279-024-02059-4. Advance online publication. https://doi.org/10.1007/s40279-024-02059-4.
Lee, B. X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P. D., Muggah, R., Davis, R., Realini, A., Kieselbach, B., MacGregor, L. S., Waller, I., Gordon, R., Moloney-Kitts, M., Lee, G., & Gilligan, J. (2016). Transforming Our World: Implementing the 2030 Agenda Through Sustainable Development Goal Indicators. Journal of public health policy, 37 Suppl 1, 13–31. https://doi.org/10.1057/s41271-016-0002-7.
Liu, J. X., Zhu, L., Li, P. J., Li, N., & Xu, Y. B. (2019). Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging clinical and experimental research, 31(5), 575–593. https://doi.org/10.1007/s40520-018-1012-z.
Liu, Y., Dong, G., Zhao, X., Huang, Z., Li, P., & Zhang, H. (2020). Post-exercise Effects and Long-Term Training Adaptations of Hormone Sensitive Lipase Lipolysis Induced by High-Intensity Interval Training in Adipose Tissue of Mice. Frontiers in physiology, 11, 535722. https://doi.org/10.3389/fphys.2020.535722.
Mahatme, S., K, V., Kumar, N., Rao, V., Kovela, R. K., & Sinha, M. K. (2022). Impact of high-intensity interval training on cardio-metabolic health outcomes and mitochondrial function in older adults: a review. Medicine and pharmacy reports, 95(2), 115–130. https://doi.org/10.15386/mpr-2201.
Maillard, F., Rousset, S., Pereira, B., Boirie, Y., Duclos, M., & Boisseau, N. (2018). High-intensity interval training is more effective than moderate-intensity continuous training in reducing abdominal fat mass in postmenopausal women with type 2 diabetes: A randomized crossover study. Diabetes & metabolism, 44(6), 516–517. https://doi.org/10.1016/j.diabet.2018.09.001.
Mateo-Gallego, R., Madinaveitia-Nisarre, L., Giné-Gonzalez, J., María Bea, A., Guerra-Torrecilla, L., Baila-Rueda, L., Perez-Calahorra, S., Civeira, F., & Lamiquiz-Moneo, I. (2022). The effects of high-intensity interval training on glucose metabolism, cardiorespiratory fitness and weight control in subjects with diabetes: Systematic review a meta-analysis. Diabetes research and clinical practice, 190, 109979. https://doi.org/10.1016/j.diabres.2022.109979.
Matsuura, S., Nagata, S., Shibazaki, K., Uchida, R., Imai, Y., Shibata, S., & Morita, H. (2024). Increased skeletal muscle mass index was involved in glycemic efficacy following diabetes treatment, and changes in fat mass index correlated with the changes in the lipid ratio in type 2 diabetes. Journal of diabetes and its complications, 38(4), 108717. https://doi.org/10.1016/j.jdiacomp.2024.108717.
Pot, G. K., Battjes-Fries, M. C., Patijn, O. N., Pijl, H., & Voshol, P. (2020). Lifestyle medicine for type 2 diabetes: Practice-based evidence for long-term efficacy of a multicomponent lifestyle intervention (Reverse Diabetes2 Now). BMJ Nutrition, Prevention & Health, 3(2), 188-195. https://doi.org/10.1136/bmjnph-2020-000081.
Pranoto, A., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Nindya, T. S., Lestari, B., & Halim, S. (2024). The role of long-term combination training in reducing and maintaining of body fat in obese young adult women. Retos, 53, 139–146. https://doi.org/10.47197/retos.v53.102460.
Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.
Putera, S. H. P., Setijono, H., Wiriawan, O., Nurhasan, Muhammad, H. N., Hariyanto, A., Sholikhah, A. M., & Pranoto, A. (2023). Positive Effects of Plyometric Training on Increasing Speed, Strength and Limb Muscles Power in Adolescent Males. Physical Education Theory and Methodology, 23(1), 42–48. https://doi.org/10.17309/tmfv.2023.1.06.
Raharjo, S., Pranoto, A., Rejeki, P. S., Harisman, A. S. M., Pamungkas, Y. P., & Andiana, O. (2021). Negative Correlation between Serum Brain-derived Neurotrophic Factor Levels and Obesity Predictor Markers and Inflammation Levels in Females with Obesity. Open Access Macedonian Journal of Medical Sciences, 9(B), 1021–1026. https://doi.org/10.3889/oamjms.2021.6840.
Rejeki, P.S., Pranoto, A., Prasetya, R.E., & Sugiharto, S. (2021). Irisin serum increasing pattern is higher at moderate-intensity continuous exercise than at moderate-intensity interval exercise in obese females. Comparative Exercise Physiology, 17(5), 475-484. https://doi.org/10.3920/CEP200050.
Rejeki, P. S., Pranoto, A., Widiatmaja, D. M., Utami, D. M., Izzatunnisa, N., Sugiharto, Lesmana, R., & Halim, S. (2024). Combined Aerobic Exercise with Intermittent Fasting Is Effective for Reducing mTOR and Bcl-2 Levels in Obese Females. Sports (Basel, Switzerland), 12(5), 116. https://doi.org/10.3390/sports12050116.
Saberi, S., Askaripour, M., Khaksari, M., Amin Rajizadeh, M., Abbas Bejeshk, M., Akhbari, M., Jafari, E., & Khoramipour, K. (2024). Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749.
Sherafati-Moghadam, M., Pahlavani, H. A., Daryanoosh, F., & Salesi, M. (2022). The effect of high-intensity interval training (HIIT) on protein expression in Flexor Hallucis Longus (FHL) and soleus (SOL) in rats with type 2 diabetes. Journal of diabetes and metabolic disorders, 21(2), 1499–1508. https://doi.org/10.1007/s40200-022-01091-3.
Shishira, K.B., Vaishali, K., Kadavigere, R., Sukumar, S., K N, S., Pullinger, S. A., & Bommasamudram, T. (2024). Effects of high-intensity interval training versus moderate-intensity continuous training on vascular function among individuals with overweight and obesity-a systematic review. International journal of obesity (2005), 10.1038/s41366-024-01586-4. Advance online publication. https://doi.org/10.1038/s41366-024-01586-4.
Sindorf, M. A. G., Germano, M. D., Dias, W. G., Batista, D. R., Braz, T. V., Moreno, M. A., & Lopes, C. R. (2021). Excess Post-Exercise Oxygen Consumption and Substrate Oxidation Following High-Intensity Interval Training: Effects of Recovery Manipulation. International journal of exercise science, 14(2), 1151–1165.
Spaulding, H. R., & Yan, Z. (2022). AMPK and the Adaptation to Exercise. Annual review of physiology, 84, 209–227. https://doi.org/10.1146/annurev-physiol-060721-095517.
Sullivan, G. M., & Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not Enough. Journal of graduate medical education, 4(3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119.
Vázquez, L. A., Romera, I., & Escalada, J. (2023). Glycaemic Control and Weight Reduction: A Narrative Review of New Therapies for Type 2 Diabetes. Diabetes Therapy, 14(11), 1771-1784. https://doi.org/10.1007/s13300-023-01467-5.
Wang, X., Kang, J., Liu, Q., Tong, T., & Quan, H. (2020). Fighting Diabetes Mellitus: Pharmacological and Non-pharmacological Approaches. Current pharmaceutical design, 26(39), 4992–5001. https://doi.org/10.2174/1381612826666200728144200.
Wang, Y., Wang, S., Meng, X., & Zhou, H. (2024). Effect of high-intensity interval training and moderate-intensity continuous training on cardiovascular risk factors in adolescents: Systematic review and meta-analysis of randomized controlled trials. Physiology & behavior, 275, 114459. https://doi.org/10.1016/j.physbeh.2024.114459.
Wondmkun Y. T. (2020). Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, metabolic syndrome and obesity : targets and therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898.
Xu, B., Wu, Q., Yin, G., Lu, L., La, R., Zhang, Y., Alifu, J., Zhang, W., Guo, F., Ji, B., Abdu, F. A., & Che, W. (2024). Associations of cardiometabolic index with diabetic statuses and insulin resistance: the mediating role of inflammation-related indicators. BMC public health, 24(1), 2736. https://doi.org/10.1186/s12889-024-20048-0.
Yang, X., Sun, J., & Zhang, W. (2024). Global trends in burden of type 2 diabetes attributable to physical inactivity across 204 countries and territories, 1990-2019. Frontiers in Endocrinology, 15, 1343002. https://doi.org/10.3389/fendo.2024.1343002.
Zhu, L., & Li, N. (2019). Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: A systematic review and meta-analysis. Aging Clinical and Experimental Research, 31(5), 575-593. https://doi.org/10.1007/s40520-018-1012-z.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Waskito Aji Suryo Putro, Alva Cherry Mustamu, Witri Suwanto
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess