Nanotecnología en la comunidad de deportistas basada en su aplicación en la detección de dopaje: una revisión sistemática de la literatura y meta-análisis (Nanotechnology in the sports athlete community based on its application in doping detection: a systematic literature review and meta-analysis)

Autores/as

  • Ahmad Chaeroni Universitas Negeri Padang https://orcid.org/0000-0001-8640-9330
  • Bekir Erhan Orhan Istanbul Aydın University https://orcid.org/0000-0002-3149-6630
  • Ardo Okilanda Universitas Negeri Padang
  • Kamal Talib Universiti Malaysia Terengganu
  • Karuppasamy Govindasamy Sri Balaji University
  • Mottakin Ahmed Government College Silwani

DOI:

https://doi.org/10.47197/retos.v60.107477

Palabras clave:

Nanotecnología, dopaje, sensores, deportes, atletas

Resumen

Este estudio examina la efectividad y precisión de las aplicaciones de la nanotecnología en la detección de dopaje dentro de la comunidad de atletas. La nanotecnología ofrece un enfoque novedoso con potencial para detectar sustancias dopantes de manera más eficiente y precisa. El método utilizado en este estudio es una Revisión Sistemática de la Literatura (RSL) y un meta-análisis, con artículos seleccionados de las bases de datos Scopus y Web of Science (WoS) que cubren los años 2020-2024. El proceso de selección emplea el método PRISMA e incluye solo artículos de investigación relevantes para el tema. Un total de 13 estudios fueron seleccionados para un análisis más detallado. Los resultados del meta-análisis indican que los métodos de Voltametría de Pulso Diferencial (DPV) y Ensayo de Inmunoabsorción Ligado a Enzimas (ELISA) proporcionan resultados altamente precisos y fiables en la detección de dopaje. No se encontraron diferencias significativas entre el uso de suero y orina como muestras de prueba. Además, los sensores de nanocompuestos demostraron ser más efectivos que los sensores regulares en la detección de sustancias dopantes con alta precisión. Los hallazgos clave de los resultados incluyen la ausencia de un efecto significativo que distinga entre los métodos DPV y ELISA (Z = 0.53, P = 0.60), la falta de heterogeneidad significativa entre los estudios analizados en relación con suero y orina (Chi² = 0.90, gl = 2, P = 0.64; Tau² = 0.00) y los sensores de nanocompuestos demostrando ser más efectivos que los sensores regulares (Z = 4.14, P < 0.0001; I² = 0%). En conclusión, la nanotecnología tiene un gran potencial para mejorar la detección de dopaje en el deporte. El uso de nanomateriales y nanosensores puede mejorar la sensibilidad, especificidad y precisión en la detección de sustancias dopantes, convirtiéndolo en una herramienta altamente efectiva para mantener la integridad y salud de los atletas. Este estudio proporciona una base sólida para el desarrollo de tecnologías de detección de dopaje basadas en nanotecnología más eficientes y efectivas en el futuro.

Palabras clave: Nanotecnología, dopaje, sensores, deportes, atletas.

Abstract. This study examines the effectiveness and accuracy of nanotechnology applications in doping detection within the athlete community. Nanotechnology offers a novel approach with potential in detecting doping substances more efficiently and accurately. The method used in this study is a Systematic Literature Review (SLR) and meta-analysis, with articles selected from the Scopus and Web of Science (WoS) databases covering the years 2020-2024. The selection process employs the PRISMA method and includes only research articles relevant to the topic. A total of 13 studies were selected for further analysis. The meta-analysis results indicate that the Differential Pulse Voltammetry (DPV) and Enzyme-Linked Immunosorbent Assay (ELISA) methods provide highly accurate and reliable results in doping detection. No significant differences were found between the use of serum and urine as test samples. Additionally, nanocomposite sensors proved to be more effective than regular sensors in detecting doping substances with high accuracy. Key findings from the results include no significant effect distinguishing between the DPV and ELISA methods (Z = 0.53, P = 0.60), no significant heterogeneity among the studies analyzed concerning serum and urine (Chi² = 0.90, df = 2, P = 0.64; Tau² = 0.00), and nanocomposite sensors proving to be more effective than regular sensors (Z = 4.14, P < 0.0001; I² = 0%). In conclusion, nanotechnology has great potential to enhance doping detection in sports. The use of nanomaterials and nanosensors can improve the sensitivity, specificity, and accuracy in detecting doping substances, making it a highly effective tool for maintaining the integrity and health of athletes. This study provides a strong foundation for the development of more efficient and effective nanotechnology-based doping detection technologies in the future.

Keywords: Nanotechnology, doping, sensors, sports, athletes.

Citas

Aguilar, M., Muñoz-Guerra, J., Plata, M. del M., & Del Coso, J. (2017). Thirteen years of the fight against doping in figures. Drug Testing and Analysis, 9(6), 866–869. https://doi.org/10.1002/dta.2168

Ahmadi, H., Gholamzadeh, M., Shahmoradi, L., Nilashi, M., & Rashvand, P. (2018). Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review. Computer Methods and Programs in Biomedicine, 161, 145–172. https://doi.org/10.1016/j.cmpb.2018.04.013

Al Omar, S. Y., Al-Mohaimeed, A. M., & El-Tohamy, M. F. (2023). Ultrasensitive functionalized CeO2/ZnO nano-composite sensor for determination of a prohibited narcotic in sports pethidine hydrochloride. Heliyon, 9(5). https://doi.org/10.1016/j.heliyon.2023.e15793

Al-Mohaimeed, A. M., Al Omar, S. Y., & El-Tohamy, M. F. (2023). Fast and novel multiwalled carbon nanotubes deco-rated with metal oxide nanoparticles for potentiometric detection of a prohibited medication in sports acebutolol hy-drochloride. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20997

Alterary, S. S. (2023). Construction of novel potentiometric sensors modified with biogenically synthesized metal oxide nanoparticles for sensitive detection of the opioid agonist-antagonist nalbuphine hydrochloride in its injection. Heli-yon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20510

Babaskin, D., Masharipov, F., Savinkova, O., Shustikova, N., & Volkova, N. (2024). Functional state of team sports athletes in the annual training cycle. Retos, 54, 106–113. https://doi.org/10.47197/retos.v54.99620

Cáceres, C., del Pilar Garcia Morgado, M., Bozo, F. C., Piletsky, S., & Moczko, E. (2022). Rapid Selective Detection and Quantification of β-Blockers Used in Doping Based on Molecularly Imprinted Nanoparticles (NanoMIPs). Poly-mers, 14(24), 5420. https://doi.org/10.3390/polym14245420

Ćibo, M., Šator, A., Kazlagić, A., & Omanović-Mikličanin, E. (2020). Application and impact of nanotechnology in sport. IFMBE Proceedings, 78, 349-362. https://doi.org/10.1007/978-3-030-40049-1_44

Chaeroni , A. ., Nurhasan, N., Ardha, M. A. A., Nur, L., Pranoto, N. W., Govindasamy, K., Khishe, M., Ahmed, M., & Talib, K. (2024). Exploración de ramas de la física para el manejo de varios casos en aplicaciones deportivas: Una revisión sistemática de la literatura (Exploration of branches of physics for handling several cases in sports applica-tions: A systematic literature review). Retos, 56, 998–1008. https://doi.org/10.47197/retos.v56.105056

Chaeroni , A. ., Gusril, G., Talib, K., Mashuri, M., Susilo, H., Orhan, B. E., Govindasamy, K., Ahmed, M., & Okilanda, A. (2024). Mejorar el entrenamiento de fútbol: Consideraciones sobre los estilos individuales de aprendizaje, los ni-veles de inteligencia y la motivación (Improving Soccer Coaching: Considerations of Individual Learning Styles, Inte-lligence Levels, and Motivation). Retos, 58, 377–383. https://doi.org/10.47197/retos.v58.104086

Chaeroni, A., Fitriadi., Surur, M., & Gusril (2023). Badminton: An Attempt to Improve Playing Skills by Utilizing Trai-ning Media. International Journal of Human Movement and Sports Sciences, 11(3), 621 - 626. doi: 10.13189/saj.2023.110315

Comini, E., Baratto, C., Concina, I., Faglia, G., Falasconi, M., Ferroni, M., Galstyan, V., Gobbi, E., Ponzoni, A., Vo-miero, A., Zappa, D., Sberveglieri, V., & Sberveglieri, G. (2013). Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors and Actuators, B: Chemical, 179, 3–20. https://doi.org/10.1016/j.snb.2012.10.027

Erkoc, P., & Ulucan-Karnak, F. (2021). Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis, 3(1), 25–52. https://doi.org/10.3390/prosthesis3010005

García-Grimau, E., Casado, A., & de la Vega, R. (2020). Evolution of doping in elite sport from the perspective of social sciences: A narrative review. Retos, 39, 973-980. https://doi.org/10.47197/RETOS.V0I39.82564

Gopalakrishnan, S., & Ganeshkumar, P. (2013). Systematic reviews and meta-analysis: Understanding the best evidence in primary healthcare. Journal of Family Medicine and Primary Care, 2(1). https://doi.org/10.4103/2249-4863.109934

Guo, Z., & Fan, H. (2021). Fe3O4-CuO Bimetallic Composite/Functionalized CNTs Modified Carbon Paste Electrode for Determination of Dexamethasone as a Doping Agent in Sports. International Journal of Electrochemical Science, 16, 1–12. https://doi.org/10.20964/2021.11.13

Harifi, T., & Montazer, M. (2017). Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. In Journal of Industrial Textiles, 46(5), 1147–1169. https://doi.org/10.1177/1528083715601512

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. In British Medical Journal, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557

Hutton, B., Catalá-López, F., & Moher, D. (2016). The PRISMA statement extension for systematic reviews incorporat-ing network meta-analysis: PRISMA-NMA. Medicina Clínica (English Edition), 147(6), 262–266. https://doi.org/10.1016/j.medcle.2016.10.003

Ihsan, N., Okilanda, A., Sepriadi, S., Farell, G., Shapie, M. N. M., & Zakaria, J. bin. (2024). Heuristic evaluation of the sport analysis application interface. Retos, 54, 235–242. https://doi.org/10.47197/retos.v54.103272

Irawan, R., Yenes, R., Mario, D. T., Komaini, A., García-Fernández, J., Orhan, B. E., & Ayubi, N. (2024). Diseño de una herramienta de medición para la coordinación ojo-mano basada en tecnología de sen-sores: validez y confiabilidad (Design of a sensor technology-based hand-eye coordination measuring tool: Validity and reliability). Retos, 56, 966–973. https://doi.org/10.47197/retos.v56.103610

Jahangirian, H., Lemraski, E. G., Webster, T. J., Rafiee-Moghaddam, R., & Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. In International Journal of Nano-medicine. 12, 2957–2978. https://doi.org/10.2147/IJN.S127683

Kong, C., & Wang, G. (2023). Development of ZnO@C/GCE sensor for electrochemical determination of terbutaline in blood serum samples. International Journal of Electrochemical Science, 18(9). https://doi.org/10.1016/j.ijoes.2023.100214

Kurniati, E., Suwono, H., Ibrohim, I., Suryadi, A., & Saefi, M. (2022). International Scientific Collaboration and Re-search Topics on STEM Education: A Systematic Review. Eurasia Journal of Mathematics, Science and Technology Educa-tion, 18(4). https://doi.org/10.29333/ejmste/11903

Li, B., & Wang, P. (2024). Development of a highly sensitive electrochemical sensor for dexamethasone detection using Fe3O4/polyaniline-Cu(II) microspheres and hematite nanoparticles. International Journal of Electrochemical Science, 19(7). https://doi.org/10.1016/j.ijoes.2024.100622

Li, Y., & Xiong, Y. (2021). Molecularly Imprinted Electrochemical Sensor for Detection of Prednisolone in Human Plasma as a Doping Agent in Sports. International Journal of Electrochemical Science, 16, 1–11. https://doi.org/10.20964/2021.10.41

Lissavetzky, J. (2011). Química y deporte: La lucha contra el dopaje en el horizonte del siglo XXI. Arbor, 187(EXTRA), 105-112. https://doi.org/10.3989/arbor.2011.extran1116

Listiani, D., Umar, F., & Riyadi, S. (2024). Athletes’ (Anti) Doping Knowledge: A Systematic Review Conocimiento (anti) dopaje de los atletas: una revisión sistemática. Retos, 56, 810-816. https://recyt.fecyt.es/index.php/retos/index

Liu, G., Lu, M., Huang, X., Li, T., & Xu, D. (2018). Application of gold-nanoparticle colorimetric sensing to rapid food safety screening. In Sensors (Switzerland) (Vol. 18, Issue 12). https://doi.org/10.3390/s18124166

Liu, Y., & Quan, C. (2023). A sensitive electrochemical sensor for the detection of sports stimulant methyltestosterone via ZnO/TiO2 nanocomposite. International Journal of Electrochemical Science, 18(10). https://doi.org/10.1016/J.IJOES.2023.100308

Ma, H., & Tian, Q. (2023). Application of nitrogen-doped carbon particles modified electrode for electrochemical de-termination of tetrazepam as muscle relaxant drug. International Journal of Electrochemical Science, 18(5). https://doi.org/10.1016/j.ijoes.2023.100084

Medina, J. Á., Marqueta, P. M., Blanco, E. O., Lorente, V. M., & Nuviala, A. N. (2017). Validation of the scale of as-sessment for the prevention of doping in school (CUPIAD). Retos, 32, 183-188.

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, 62(10). https://doi.org/10.1016/j.jclinepi.2009.06.005

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Estarli, M., Barrera, E. S. A., Martínez-Rodríguez, R., Baladia, E., Agüero, S. D., Camacho, S., Buhring, K., Herrero-López, A., Gil-González, D. M., Altman, D. G., Booth, A., … Whitlock, E. (2016). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Espanola de Nutricion Humana y Dietetica, 20(2), 148-160. https://doi.org/10.1186/2046-4053-4-1

Mundaca-Uribe, R., Diego, M. D. E., Henríquez-Aedo, K., Aranda, M., & Peña-Farfal, C. (2019). Development and characterization of a sensor based on carbon nanofibers: Application to acetazolamide determination in pharmaceuti-cals and biological fluids. Journal of the Chilean Chemical Society, 64(1), 4382-4385. https://doi.org/10.4067/s0717-97072019000104382

Ni, Z. (2023). TESTOSTERONE BIOSENSOR IN SPORTS DOPING. Revista Brasileira de Medicina Do Esporte, 29. https://doi.org/10.1590/1517-8692202329012022_0442

Okilanda, A., Suganda, M. A., Chaeroni, A., Rozi, M. F. ., Saputra, M. ., Nugroho , S., Bhosle, J., Mishra, R. ., Singh, J. ., Rajpoot, Y. S. ., Govindasamy , K. ., Elayaraja, M. ., & Gogoi, H. . (2024). Análisis comparativo de ejercicios de flexiones elevadas y en el suelo para la activación del músculo pectoral mayor (Comparative analysis of elevated and floor push-up exercises for activation of the pectoralis major muscle). Retos, 57, 747–752. https://doi.org/10.47197/retos.v57.107264

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., & Moher, D. (2021). Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. Journal of Clinical Epidemiology, 134, 103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003

Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systemat-ic literature reviews (SPAR-4-SLR). International Journal of Consumer Studies. https://doi.org/10.1111/ijcs.12695

Peng, C., Liu, H. C., Wu, M., Han, L., & Wang, Z. (2023). A sensitive electrochemical sensor for detection of methyl-testosterone as a doping agent in sports by CeO2/CNTs nanocomposite. International Journal of Electrochemical Science, 18(2), 25-30. https://doi.org/10.1016/j.ijoes.2023.01.014

Reardon, C., & Creado, S. (2014). Drug abuse in athletes. Substance Abuse and Rehabilitation. https://doi.org/10.2147/sar.s53784

Sabela, M., Balme, S., Bechelany, M., Janot, J. M., & Bisetty, K. (2017). A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays. In Advanced Engineering Materials (Vol. 19, Issue 12). https://doi.org/10.1002/adem.201700270

Sepriadi, S., Syafruddin, S., Khairuddin, K., Alnedral, A., Rifki, M. S., Bafirman, B., Ihsan, N., Eldawaty, E., Hayati, S. R., Pratiwi, H., Pratiwi, M. D., & Chaeroni , A. . (2024). Efecto del estado nutricional y los ingresos de los padres sobre la aptitud física de los estudiantes de primaria (Effect of nutritional status and parents’ income on physical fit-ness of elementary school students). Retos, 58, 506–510. https://doi.org/10.47197/retos.v58.107998

Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Altman, D. G., Booth, A., Chan, A. W., Chang, S., Clifford, T., Dickersin, K., Egger, M., Gøtzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., … Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 20(2), 148-160. https://doi.org/10.1136/bmj.g7647

Singh, N. A. (2017). Nanotechnology innovations, industrial applications and patents. In Environmental Chemistry Letters, 15(2), 185–191. https://doi.org/10.1007/s10311-017-0612-8

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039

Stewart, L. A., Clarke, M., Rovers, M., Riley, R. D., Simmonds, M., Stewart, G., & Tierney, J. F. (2015). Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD statement. In JAMA - Journal of the American Medical Association, 313(16), 1657–1665. https://doi.org/10.1001/jama.2015.3656

Stukova, E. A., Byankina, L. V., Manikovskaya, M. A., Galitsyn, S. V., & Byankin, V. V. (2023). Implementation of the principle of consciousness and activity in the process of training young sambo wrestlers as the embodiment of harmo-ny between body and spirit. Retos, 47, 887-892. https://doi.org/10.47197/retos.v47.93487

WADA. (2016). Detection of Synthetic Forms of Endogenous Anabolic Androgenic Steroids by GC/C/IRMS. WADA Technical Document – TD2016IRMS, 1-13.

Xiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. In Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971

Xing, Z. (2022). Nanomaterials and Research on the Repair of Basketball Sports Ligament Injury. Journal of Nanomateri-als, 2022. https://doi.org/10.1155/2022/1797629

Yendrizal, Y., Okilanda, A. ., Masrun, M., Ridwan, M., Ahmed, M., Crisari, S., & Tulyakul, S. (2024). Descubriendo la ciencia de la resistencia física: técnicas de entrenamiento y factores biológicos (Unlocking the Science of Physical En-durance: Training Techniques and Biological Factors). Retos, 55, 504–512. https://doi.org/10.47197/retos.v55.105072

Zhang, C. (2024). Monitoring athlete health and performance using an electrochemical sensor based on zinc oxide nano-rods. Alexandria Engineering Journal, 92, 221-230. https://doi.org/10.1016/j.aej.2024.02.056

Descargas

Publicado

2024-11-01

Cómo citar

Chaeroni, A. ., Orhan, B. E., Okilanda, A., Talib, K., Govindasamy, K., & Ahmed, M. (2024). Nanotecnología en la comunidad de deportistas basada en su aplicación en la detección de dopaje: una revisión sistemática de la literatura y meta-análisis (Nanotechnology in the sports athlete community based on its application in doping detection: a systematic literature review and meta-analysis). Retos, 60, 287–299. https://doi.org/10.47197/retos.v60.107477

Número

Sección

Revisiones teóricas sistemáticas y/o metaanálisis

Artículos más leídos del mismo autor/a

<< < 1 2 3 4 5 6 > >>