Analysis of the segmental contribution in sprint start performance

Authors

DOI:

https://doi.org/10.47197/retos.v43i0.89732

Keywords:

Biomechanics, Measurement calculation, Sprint Start technique, Athletics

Abstract

In this study, a calculation system has been applied to examine the contribution of five groups of body segments to the horizontal displacement of the Center of Mass (CM) in block starts and to explore their relationship with the horizontal velocity of the CM at the end of 0.1s and 0.312s of the acceleration phase. Twenty sprinters with a personal record in 100 m of 11.05 ± 0.31s have participated. The horizontal reaction forces were recorded using two force platforms synchronized to a video camera that recorded the sagittal plane of motion. The contribution of the legs at the end of the acceleration phase was 91.2 ± 2.4% and the free leg was 8.1 ± 1.0%. The trunk + head is the first group of segments that begins to contribute to the horizontal displacement of the CM, reaching 39.3 ± 24.3% in the first 0.1s. His quick forward contribution causes a reactive backward force that could be related to an ankle dorsiflexion of 8º ± 3º and 9º ± 3º, back and front leg, respectively. The early contribution of the head + trunk has been positively correlated with the horizontal velocity at the end of the acceleration phase (r = 0.622, p = 0.003), which confirms its importance as a performance indicator in block starts.

References

Bezodis, N.E., Salo, A.I.T., Trewartha, G. (2010). Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomechanics, 9, 258-269. Doi:10.1080/14763141.2010.538713.

Bezodis, N.E., Salo, A.I.T., Trewartha, G. (2015). Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. European Journal of Sport Science, 15, 118–24. Doi: 10.1080/17461391.2014.928915.

Bezodis, N.E., Willwacher, S., Salo, A.I.T. (2019). The biomechanics of the track and field sprint start: A narrative review, Sports Medicine, 49(9), 1345–1364. Doi10.1007/s40279-019-01138-1

Bezodis, N.E., Walton, S.P. y Nagahara, R. (2019). Understanding the track and field sprint start through a functional analysis of the external forcé features which contribute to higher levels of block phase performance, Journal of Sports Sciences, 37(5), 560-567, Doi: 10.1080/02640414.2018.1521713.

Brazil, A., Exell, T., Wilson, C., Willwacher, S., Bezodis, I. y Irwin, G. (2017). Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting, Journal of Sports Sciences, 35(16), 1629-1635, Doi: 10.1080/02640414.2016.1227465.

Brazil, A., Exell, T., Wilson, C., Willwacher, S., Bezodis, I.N. y Irwin, G. (2018). Joint kinetic determinants of starting block performance in athletic sprinting. Journal of Sports Sciences, 36(14), 1656–1662, Doi: 10.1080/02640414.2017.1409608

de Leva, P. (1996). Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters. Journal of Biomechanics, 29(9), 1223–1230, Doi: 10.1016/0021-9290(95)00178-6.

Debaere, S., Delecluse, C., Aerenhouts, D., Hagman, F. y Jonkers, I. (2013). From block clearance to sprint running: characteristics underlying an effective transition. Journal of Sports Sciences, 31(2), 137-149, Doi:10.1080/02640414.2012.722225.

Graham-Smith, P., Natera A. y Saunders, S. (2014). Contribution of the arms in the sprint start and their influence on force and velocity characteristics, En K. Sato, W. A. Sands, S. Mizuguchi (Eds.) 32 International Conference of Biomechanics in Sports (pp, 578-581). Johnson City, T.N., USA.

Guissard, N., Duchateau, J. y Hainaut, K. (1992). EMG and mechanical changes during sprint starts at different front block obliquities. Medicine & Science in Sports & Exercise, 24(11), 1257-1263.

Gutiérrez-Dávila, M., Dapena, J. y Campos, J. (2006). The effect of muscular pre-tensing on the sprint start, Journal of Applied Biomechanics, 22(3), 194-201, Doi:10.1123/jab.22.3.194.

Gutiérrez-Dávila, M., Amaro, F.J., Garrido, J.M. y Rojas, F.J. (2014). An analysis of two styles of arm action in the vertical countermovement jump, Sports Biomechanics, 13(2), 135-143, Doi: 10.1080/14763141.2014.910832

Harland, M.J. y Steele, J,R. (1997). Biomechanics of the sprint start, Sports Medicine, 23(1), 11-20. Doi: 0112-1642/97/0001-0011/$05.00/0.

Hill, A.V. (1938) The heat of shortening and dynamic constants of muscle. Proceedings of the Rohal Society Series B 126, 136-195.

Mero, A., Kuitunen, S., Harland, M., Kyröläinen, H. y Komi, P.V. (2006). Effects of muscle – tendon length on joint moment and power during sprint starts, Journal of Sports Sciences, 24(2), 165-173. Doi: 10.1080/02640410500131753

Otsuka, M., Shim, J.K., Kurihara, T., Yoshioka, S., Nokata, M. y Isaka, T. (2014). Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running. Journal of Applied Biomechanics. 30(3), 390–400. Doi:10.1123/jab.2013-0017.

Schrödter, E., Brüggemann, G.P. y Willwacher, S. (2017). Is soleus muscletendon-unit behavior related to ground-force application during the sprint start?, International Journal of Sports Physiology and Performance, 12, 448–54. Doi:10.1123/ijspp.2015-0512

Slawinski, J., Bonnefoy, A., Ontanon, G., Leveque, J.M., Miller, C., Riquet, A., Chèze, L. y Dumaset, R. (2010). Segment-interaction in sprint start: analysis of 3D angular velocity and kinetic energy in elite sprinters. Journal of Biomechanics, 43, 1494-1502. Doi:10.1016/j.jbiomech.2010.01.044

Slawinski, J., Dumas, R., Cheze, L., Ontanon, G., Miller, C. y Mazure-Bonnefoy, A. (2013). Effect of postural changes on 3D joint angular velocity during starting block phase. Journal of Sports Sciences, 31, 256–63. Doi: 10.1055/s-0032-1304587.

Willwacher, S., Herrmann, V., Heinrich, K., Funken, J., Strutzenberger, G., Goldmann, J.P., Braunstein, B., Brazil, A., Irwin, G., Potthast, W. y Brüggemann, G,P. (2016) Sprint Start Kinetics of Amputee and Non-Amputee Sprinters. PLoS ONE, 11(11), e0166219, Doi:10.1371/journal.pone.0166219.

Wood, G. A. y Jennings, L. S. (1979). On the use of spline functions for data smoothing. Journal of Biomechanics, 12, 477-479, Doi:10.1016/S0021-9290(99)00083-4

Zatsiorsky, V. M., & Seluyanov, N. V. (1983). The mass and inertial characteristics of the main segments of the human body. En H. Matsui & K. Kobayashi (Eds.), Biomechanics VIII-B (pp. 1152–1159). Champaign, IL: Human Kinetics.

Published

2022-01-06

How to Cite

Gutiérrez-Cruz, C., Gutiérrez-Dávila, M., & Campos-Granell, J. (2022). Analysis of the segmental contribution in sprint start performance. Retos, 43, 988–995. https://doi.org/10.47197/retos.v43i0.89732

Issue

Section

Original Research Article

Most read articles by the same author(s)