Effect of different doses of whey proteins on muscle strength, body composition and gene expression of mTOR and MuRF-1 in trained Wistar rats

Authors

  • Raphael Furtado Marques Postgraduate Program in Physical Education, Universidade Federal do Maranhão, São Luís, MA, Brazil https://orcid.org/0000-0001-6060-5587
  • Marcos Roberto Campos de Macedo Postgraduate Program in Adult Health-PPGSAD at Federal University of Maranhão-UFMA, Brazil
  • Alanna Joselle Santiago Silva Postgraduate Program in Adult Health-PPGSAD at Federal University of Maranhão-UFMA, Brazil https://orcid.org/0000-0002-4350-0190
  • Flavia Castello Branco Vidal Postgraduate Program in Adult Health-PPGSAD at Federal University of Maranhão-UFMA, Brazil
  • Carlos Eduardo Neves Amorim Postgraduate Program in Physical Education, Universidade Federal do Maranhão, São Luís, MA, Brazil
  • Antônio Coppi Navarro Postgraduate Program in Physical Education, Universidade Federal do Maranhão, São Luís, MA, Brazil
  • Francisco Navarro Postgraduate Program in Physical Education, Universidade Federal do Maranhão, São Luís, MA, Brazil

DOI:

https://doi.org/10.47197/retos.v61.108296

Keywords:

whey protein, body composition, resistance training, mTOR, Murf-1, Mafbx

Abstract

Introduction: The combination of resistance training (RT) and whey protein supplementation (WPS) is widely practiced by both athletes and recreational exercisers to promote muscle growth and increase strength. Objectiveː This study examined the effect of different doses of whey proteins on muscle strength, body composition and gene expression of mTOR and MuRF-1 in trained Wistar rats. Methodsː 80 male Wistar rats were divided into 8-groups (n=10): sedentary control (C), RT-control (TC), groups consuming whey protein at varying doses (W2, W4, and W6; respectively 2/4/6g/kg/day), and groups consuming whey protein at varying doses combined to RT (TW2, TW4, and TW6; respectively 2/4/6g/kg/day). The RT program was conducted for 12 weeks, three days a week, with the training intensity increasing from 50 to 100% of the rats' body weight. The rats receiving the whey supplement via the gavage method based on their body weight. Resultsː Muscle strength significantly increased in all trained groups (p<0.0001), with a more significant increase in the groups RT and WPS combined. In addition, the expression of mTOR was higher in the RT groups compared to the sedentary groups (p<0.01), but supplementation did not yield significant differences. WPS decreased MuRF-1 expression (p<0.01) independently of RT. Conclusionː In conclusion, RT combined with WPS for 12 weeks improved muscle strength. Furthermore, mTOR expression increased in trained rats, but not in sedentary rats who used different doses of WPS. However, WPS at any dose reduced MuRF-1 expression, independently of RT. Higher WPS doses did not enhance observed gains compared to a lower dose.

Keywords: whey protein, body composition, resistance training, mTOR, MuRF-1.

References

Antonio-Santos, J., Ferreira, D. J. S., Gomes Costa, G. L., Matos, R. J. B., Toscano, A. E., Manhães-de-Castro, R., & Leandro, C. G. (2016). Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neu-rotrophic Factors in Young Adult Rats. The Journal of Strength & Conditioning Research, 30(12). https://journals.lww.com/nsca-jscr/Fulltext/2016/12000/Resistance_Training_Alters_the_Proportion_of.32.aspx

Avila, E. T. P., da Rosa Lima, T., Tibana, R. A., de Almeida, P. C., Fraga, G. A., de Souza Sena, M., Corona, L. F. P., Navalta, J. W., Rezaei, S., Ghayomzadeh, M., Damazo, A. S., Prestes, J., & Voltarelli, F. A. (2018). Effects of high-protein diet containing isolated whey protein in rats submitted to resistance training of aquatic jumps. Nutrition, 53, 85–94. https://doi.org/https://doi.org/10.1016/j.nut.2018.01.018

Carrilho, L. (2013). Benefícios da utilização da proteína do soro de leite Whey Protein. Revista Brasileira de Nutriçao Es-portiva, 7(40).

Cermak, N. M., Res, P. T., De Groot, L. C. P. G. M., Saris, W. H. M., & Van Loon, L. J. C. (2012). Protein supple-mentation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. American Journal of Clinical Nutrition, 96(6). https://doi.org/10.3945/ajcn.112.037556

Galaviz Berelleza, R., Trejo Trejo, M., Borbón Román, J. C., Alarcón Meza, E. I., Pineda Espejel, H. A., Arrayales Mi-llan, E. M., Robles Hernández, G. S., & Cutti Riveros, L. (2020). Efecto de un programa de entrenamiento de fuer-za sobre IGF-1 en adultos mayores con obesidad e hipertensión controlada (Effect of a strength training program on IGF-1 in older adults with obesity and controlled hypertension). Retos, 39, 253–256. https://doi.org/10.47197/retos.v0i39.74723

Gil, J. H., & Kim, C. K. (2015). Effects of different doses of leucine ingestion following eight weeks of resistance exer-cise on protein synthesis and hypertrophy of skeletal muscle in rats. Journal of Exercise Nutrition and Biochemistry, 19(1). https://doi.org/10.5717/jenb.2015.19.1.31

Guertin, D. A., & Sabatini, D. M. (2007). Defining the Role of mTOR in Cancer. In Cancer Cell (Vol. 12, Issue 1). https://doi.org/10.1016/j.ccr.2007.05.008

Haraguchi, F. K., de Brito Magalhães, C. L., Neves, L. X., dos Santos, R. C., Pedrosa, M. L., & Silva, M. E. (2014). Whey protein modifies gene expression related to protein metabolism affecting muscle weight in resistance-exercised rats. Nutrition, 30(7), 876–881. https://doi.org/https://doi.org/10.1016/j.nut.2013.12.007

Hellyer, N. J., Nokleby, J. J., Thicke, B. M., Zhan, W. Z., Sieck, G. C., & Mantilla, C. B. (2012). Reduced ribosomal protein S6 phosphorylation after progressive resistance exercise in growing adolescent rats. Journal of Strength and Conditioning Research, 26(6). https://doi.org/10.1519/JSC.0b013e318231abc9

Hornberger Jr., T. A., & Farrar, R. P. (2004). Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. Canadian Journal of Applied Physiology, 29(1), 16–31. https://doi.org/10.1139/h04-002

Hornberger, T. A., Sukhija, K. B., & Chien, S. (2006). Regulation of mTOR by Mechanically Induced Signaling Events in Skeletal Muscle. Cell Cycle, 5(13), 1391–1396. https://doi.org/10.4161/cc.5.13.2921

Karagounis, L. G., Yaspelkis, B. B., Reeder, D. W., Lancaster, G. I., Hawley, J. A., & Coffey, V. G. (2010). Contrac-tion-induced changes in TNFα and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. European Journal of Applied Physiology, 109(5). https://doi.org/10.1007/s00421-010-1427-5

Krug, A. L. O., Macedo, A. G., Zago, A. S., Rush, J. W. E., Santos, C. F., & Amaral, S. L. (2016). High-intensity re-sistance training attenuates dexamethasone-induced muscle atrophy. Muscle and Nerve, 53(5). https://doi.org/10.1002/mus.24906

Luciano, T. F., Marques, S. O., Pieri, B. L., De Souza, D. R., Araújo, L. V, Nesi, R. T., Scheffer, D. L., Comin, V. H., Pinho, R. A., Muller, A. P., & De Souza, C. T. (2017). Responses of Skeletal Muscle Hypertrophy in Wistar Rats to Different Resistance Exercise Models. Physiol. Res, 66, 317–323. www.biomed.cas.cz/physiolres

Luo, J. qiu, Chen, D. wen, & Yu, B. (2013). Upregulation of amino acid transporter expression induced by l-leucine availability in L6 myotubes is associated with ATF4 signaling through mTORC1-dependent mechanism. Nutrition, 29(1). https://doi.org/10.1016/j.nut.2012.05.008

Morifuji, M., Sakai, K., Sanbongi, C., & Sugiura, K. (2005). Dietary whey protein increases liver and skeletal muscle glycogen levels in exercise-trained rats. British Journal of Nutrition, 93(4), 439–445. https://doi.org/DOI: 10.1079/BJN20051373

Morton, R. W., Murphy, K. T., McKellar, S. R., Schoenfeld, B. J., Henselmans, M., Helms, E., Aragon, A. A., Devries, M. C., Banfield, L., Krieger, J. W., & Phillips, S. M. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52(6), 376–384. https://doi.org/10.1136/bjsports-2017-097608

Murton, A. J., Constantin, D., & Greenhaff, P. L. (2008). The involvement of the ubiquitin proteasome system in hu-man skeletal muscle remodelling and atrophy. In Biochimica et Biophysica Acta - Molecular Basis of Disease (Vol. 1782, Issue 12). https://doi.org/10.1016/j.bbadis.2008.10.011

Naderi, A., de Oliveira, E. P., Ziegenfuss, T. N., & Willems, M. E. T. (2016). Timing, Optimal Dose and Intake Dura-tion of Dietary Supplements with Evidence-Based Use in Sports Nutrition. Journal of Exercise Nutrition & Biochemistry, 20(4). https://doi.org/10.20463/jenb.2016.0031

Nakayama, K., Tagawa, R., Saito, Y., & Sanbongi, C. (2019). Effects of whey protein hydrolysate ingestion on post-exercise muscle protein synthesis compared with intact whey protein in rats. Nutrition and Metabolism, 16(1). https://doi.org/10.1186/s12986-019-0417-9

Ogasawara, R., Sato, K., Matsutani, K., Nakazato, K., & Fujita, S. (2014). The order of concurrent endurance and re-sistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 306(10). https://doi.org/10.1152/ajpendo.00647.2013

Padilha, C. S., Cella, P. S., Ribeiro, A. S., Voltarelli, F. A., Testa, M. T. J., Marinello, P. C., Iarosz, K. C., Guirro, P. B., & Deminice, R. (2019). Moderate vs high-load resistance training on muscular adaptations in rats. Life Sciences, 238. https://doi.org/10.1016/j.lfs.2019.116964

Pal, S., & Radavelli-Bagatini, S. (2013). The effects of whey protein on cardiometabolic risk factors. Obesity Reviews, 14(4). https://doi.org/10.1111/obr.12005

Phillips, S. M., & van Loon, L. J. C. (2011). Dietary protein for athletes: From requirements to optimum adaptation. Journal of Sports Sciences, 29(SUPPL. 1). https://doi.org/10.1080/02640414.2011.619204

Samal, J. R. K., & Samal, I. R. (2018). Protein Supplements: Pros and Cons. Journal of Dietary Supplements, 15(3), 365–371. https://doi.org/10.1080/19390211.2017.1353567

Teixeira, K. R., Silva, M. E., de Lima, W. G., Pedrosa, M. L., & Haraguchi, F. K. (2016). Whey protein increases muscle weight gain through inhibition of oxidative effects induced by resistance exercise in rats. Nutrition Research, 36(10), 1081–1089. https://doi.org/https://doi.org/10.1016/j.nutres.2016.08.003

Xia, Z., Cholewa, J., Zhao, Y., Yang, Y. Q., Shang, H. Y., Guimarães-Ferreira, L., Naimo, M. A., Su, Q. S., & Zanchi, N. E. (2016). Hypertrophy-promoting effects of leucine supplementation and moderate intensity aerobic exercise in pre-senescent mice. Nutrients, 8(5). https://doi.org/10.3390/nu8050246

Zanchi, N. E., de Siqueira Filho, M. A., Lira, F. S., Rosa, J. C., Yamashita, A. S., de Oliveira Carvalho, C. R., Seelaen-der, M., & Lancha, A. H. (2009). Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3β and p70S6K levels in rats. European Journal of Applied Physiology, 106(3). https://doi.org/10.1007/s00421-009-1033-6

Downloads

Published

2024-12-01

How to Cite

Furtado Marques, R., Campos de Macedo, M. R. ., Santiago Silva, A. J. ., Castello Branco Vidal, F. ., Neves Amorim, C. E. ., Coppi Navarro, A. ., & Navarro, F. . (2024). Effect of different doses of whey proteins on muscle strength, body composition and gene expression of mTOR and MuRF-1 in trained Wistar rats. Retos, 61, 728–735. https://doi.org/10.47197/retos.v61.108296

Issue

Section

Original Research Article

Most read articles by the same author(s)