What is the best predictor of body fat percentage for older brazilian women?

Authors

  • Vinícus De Oliveira Damasceno Program in Operational Human Performance, Air Force University, Rio de Janeiro https://orcid.org/0000-0003-0577-9204
  • Jeferson Macedo Vianna Physical Education Department, Federal University of Juiz de Fora, Juiz de Fora https://orcid.org/0000-0003-1594-4429
  • Alexander Barreiros Cardoso Bomfim Program in Operational Human Performance, Air Force University, Rio de Janeiro
  • DANILO EDSON DE SOUZA Program in Physical Exercise, Federal University of Pernambuco https://orcid.org/0000-0002-8295-9578
  • Jakson Felix da Silva Federal University of Pernambuco
  • Rubens Vinícius Letieri Multidisciplinary Research Nucleus in Physical Education (NIMEF), Federal University of North of Tocantins https://orcid.org/0000-0003-4520-6339
  • André Dos Santos Costa Program in Physical Exercise, Federal University of Pernambuco https://orcid.org/0000-0001-5301-2572
  • Jorge Perrout de Lima Physical Education Department, Federal University of Juiz de Fora

DOI:

https://doi.org/10.47197/retos.v59.104031

Keywords:

Anthropometry; body composition; older adults.

Abstract

This study aimed to investigate the validity of several equations and predictive indices for estimating body fat percentage (%BF) in 152 older women, with an average age of 67.4 years and an average body mass index (BMI) of 28.65 kg/m². To this end, anthropometric measurements including height, body weight, circumferences (waist and hip), and a dual energy X-ray absorptiometry (DXA) scan were performed. All measurements were performed by trained researchers following specific protocols. The results were compared to the dual energy X-ray absorptiometry (DXA) technique, which is considered the reference method. The analyzed equations showed moderate to good correlation coefficients with DXA, with particular emphasis on Visser’s equation 6, which showed the best correlation (r = 0.752, p < 0.001). However, the agreement between the equations and DXA, as assessed by the Lin concordance coefficient, was classified as poor (ρc < 0.90). This indicates that although the equations have a positive correlation with body composition, they tend to deviate from the identity line when compared to the reference method. Additionally, the equations showed high sensitivity for detecting obesity when the cut-off point of 30% body fat was adopted, indicating a good ability to identify the presence of the condition. However, the equations, with the exception of equation 4, showed low specificity, meaning they had limited ability to detect normal individuals, resulting in a low negative predictive value. The results suggest that BF% equations and indices are dependent on the populations in which they were developed. The specificity and sensitivity of these equations may vary, and it is important to carefully select the most appropriate equation for estimating BF% in older Brazilian women.

Keywords: Anthropometry; body composition; older adults.

References

Agha, M., & Agha, R. (2017). The rising prevalence of obesity: part A: impact on public health. Int J Surg Oncol (N Y), 2(7), e17. doi:10.1097/ij9.0000000000000017

Amarya, S., Singh, K., & Sabharwal, M. (2014). Health consequences of obesity in the elderly. Journal of Clinical Gerontol-ogy and Geriatrics, 5(3), 63-67. doi:https://doi.org/10.1016/j.jcgg.2014.01.004

Arroyo, P., Lera, L., Sánchez, H., Bunout, D., Santos, J. L., & Albala, C. (2007). Indicadores antropométricos, compo-sición corporal y limitaciones funcionales en ancianos. Revista médica de Chile, 135, 846-854.

Bergman, R. N., Stefanovski, D., Buchanan, T. A., Sumner, A. E., Reynolds, J. C., Sebring, N. G., . . . Watanabe, R. M. (2011). A better index of body adiposity. Obesity (Silver Spring), 19(5), 1083-1089. doi:10.1038/oby.2011.38.

Colleluori, G., & Villareal, D. T. (2021). Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Experimental Gerontology, 155, 111561. doi:https://doi.org/10.1016/j.exger.2021.111561

Da Cruz, I. B. M., Almeida, M. S. C., Schwanke, C. H. A., & Moriguchi, E. H. (2004). Prevalência de obesidade em idosos longevos e sua associação com fatores de risco e morbidades cardiovasculares. Revista da Associação Médica Bra-sileira, 50.

de Onis, M., & Habicht, J. P. (1996). Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr, 64(4), 650-658. doi:10.1093/ajcn/64.4.650

Delgado-Gonzalo, R., Parak, J., Tarniceriu, A., Renevey, P., Bertschi, M., & Korhonen, I. (2015). Evaluation of accura-cy and reliability of PulseOn optical heart rate monitoring device. Annu Int Conf IEEE Eng Med Biol Soc, 2015, 430-433. doi:10.1109/embc.2015.7318391

Deurenberg, P., Weststrate, J. A., & Seidell, J. C. (1991). Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. British Journal of Nutrition, 65(2), 105-114. doi:10.1079/BJN19910073

Deurenberg, P., Yap, M., & van Staveren, W. A. (1998). Body mass index and percent body fat: a meta analysis among different ethnic groups. International Journal of Obesity, 22(12), 1164-1171. doi:10.1038/sj.ijo.0800741

Duren, D. L., Sherwood, R. J., Czerwinski, S. A., Lee, M., Choh, A. C., Siervogel, R. M., & Cameron Chumlea, W. (2008). Body composition methods: comparisons and interpretation. J Diabetes Sci Technol, 2(6), 1139-1146. doi:10.1177/193229680800200623

Fokkema, T., Kooiman, T. J., Krijnen, W. P., CP, V. D. S., & M, D. E. G. (2017). Reliability and Validity of Ten Con-sumer Activity Trackers Depend on Walking Speed. Med Sci Sports Exerc, 49(4), 793-800. doi:10.1249/mss.0000000000001146

Gallagher, D., Visser, M., Sepúlveda, D., Pierson, R. N., Harris, T., & Heymsfield, S. B. (1996). How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol, 143(3), 228-239. doi:10.1093/oxfordjournals.aje.a008733

Gómez-Ambrosi, J., Silva, C., Catalán, V., Rodríguez, A., Galofré, J. C., Escalada, J., Frühbeck, G. (2012). Clinical usefulness of a new equation for estimating body fat. Diabetes Care, 35(2), 383-388. doi:10.2337/dc11-1334

Heyward, V. H. (1998). Practical body composition assessment for children, adults, and older adults. Int J Sport Nutr, 8(3), 285-307. doi:10.1123/ijsn.8.3.285

Heyward, V. H., & Wagner, D. R. (2004). Applied body composition assessment (2nd ed.). Champaign, IL: Human Kinet-ics.

Kagawa, M., Byrne, N. M., & Hills, A. P. (2008). Comparison of body fat estimation using waist:height ratio using dif-ferent 'waist' measurements in Australian adults. Br J Nutr, 100(5), 1135-1141. doi:10.1017/s0007114508966095

Keller, K., & Engelhardt, M. (2013). Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J, 3(4), 346-350.

Lean, M. E., Han, T. S., & Deurenberg, P. (1996). Predicting body composition by densitometry from simple anthro-pometric measurements. Am J Clin Nutr, 63(1), 4-14. doi:10.1093/ajcn/63.1.4

Leknessund, O. G. R., Morelli, V. M., Strand, B. H., Hansen, J. B., & Brækkan, S. K. (2022). Hand grip strength and risk of incident venous thromboembolism: The Tromsø study. Res Pract Thromb Haemost, 6(7), e12833. doi:10.1002/rth2.12833

Lin, H., Yu, P., Yang, M., Wu, D., Wang, Z., An, J., . . . Deng, N. (2022). Making Specific Plan Improves Physical Activity and Healthy Eating for Community-Dwelling Patients With Chronic Conditions: A Systematic Review and Meta-Analysis. Front Public Health, 10, 721223. doi:10.3389/fpubh.2022.721223

Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-268.

Marchi-Alves, L. M., Yagui, C. M., Rodrigues, C. S., Mazzo, A., Rangel, E. M. L., & Girão, F. B. (2011). Obesidade infantil ontem e hoje: importância da avaliação antropométrica pelo enfermeiro. Escola Anna Nery, 15.

Mastroeni, M. F., Mastroeni, S. S. d. B. S., Erzinger, G. S., & Marucci, M. d. F. N. (2010). Antropometria de idosos residentes no município de Joinville-SC, Brasil. Revista Brasileira de Geriatria e Gerontologia, 13.

McBride, G. B. (2005). A proposal for strength-of-agreement criteria for Lin's Concordance Correlation Coefficient: NIWA Client Report: HAM2005-062.

Brazilian Association for the Study of Obesity and Metabolic Syndrome (2022). Mapa da Obesidade. Retrieved from https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/

Moreira, A. d. J., Nicastro, H., Cordeiro, R. C., Coimbra, P., & Frangella, V. S. (2009). Composição corporal de ido-sos segundo a antropometria. Revista Brasileira de Geriatria e Gerontologia, 12.

Nelson, M. B., Kaminsky, L. A., Dickin, D. C., & Montoye, A. H. (2016). Validity of Consumer-Based Physical Activity Monitors for Specific Activity Types. Med Sci Sports Exerc, 48(8), 1619-1628. doi:10.1249/mss.0000000000000933

Nita, M., Ellis, M. A., & Madden, L. V. (2003). Reliability and accuracy of visual estimation of phomopsis leaf blight of strawberry. Phytopathology, 93(8), 995-1005. doi:10.1094/PHYTO.2003.93.8.995.

Peña, J. C., Martin-Aleman, W. F., Alberto-Cardozo, L., Castillo-Daza, C. A., Andres-Yanez, C., & Tellez Tinjca, L. A. (2022). Efectos de la secuencia de ejercicios intrasesión del entrenamiento concurrente sobre la composición corpo-ral y la aptitud física de las mujeres mayores (Effects of the Intrasession Exercise Sequence of Concurrent Training on Older Women’s Body Compositio. Retos, 45, 760–766. https://doi.org/10.47197/retos.v45i0.92613.

Pleticosic-Ramírez, Y., Mecías Calvo, M., & Navarro-Patón, R. (2024). Efectos de programas de ejercicio físico en la composición corporal, condición física y calidad de vida de personas mayores con sobrepeso u obesidad: una revisión sistemática (Effects of physical exercise programs on body composition, physical fitness and quality of life in older people with overweight or obesity: a systematic review). Retos, 56, 47–62. https://doi.org/10.47197/retos.v56.104052

Rech, C. R., Lima, L. R. A., Cordeiro, B. A., Petroski, E. L., & Vasconcelos, F. d. A. G. d. (2010). Validade de equa-ções antropométricas para a estimativa da gordura corporal em idosos do sul do Brasil. Revista Brasileira de Cineantro-pometria & Desempenho Humano, 12.

Ripka, W. L., Cintra-Andrade, J. H., & Ulbricht, L. (2022). A century of skinfolds for body composition estimation: what we learned? Revista Brasileira de Cineantropometria & Desempenho Humano, 24.

Santos, K. T., Santos Júnior, J. C. C., Rocha, S. V., Reis, L. A. , Coqueiro, R. S., & Fernandes, M. H. (2014). Indicado-res antropométricos de estado nutricional como preditores de capacidade em idosos. Revista Brasileira de Medicina do Esporte, 20.

Scafoglieri, A., Clarys, J. P., Cattrysse, E., & Bautmans, I. (2014). Use of anthropometry for the prediction of regional body tissue distribution in adults: benefits and limitations in clinical practice. Aging Dis, 5(6), 373-393. doi:10.14366/AD.2014.0500373

Scafoglieri, A., Van den Broeck, J., Cattrysse, E., Bautmans, I., & Heymsfield, S. B. (2022). Non-linear Associations Between Visceral Adipose Tissue Distribution and Anthropometry-Based Estimates of Visceral Adiposity. Frontiers in Nutrition, 9. doi:10.3389/fnut.2022.825630

Silva, D. R. P., Ribeiro, A. S., Pavão, F. H., Ronque, E. R. V., Avelar, A., Silva, A. M., & Cyrino, E. S. (2013). Validade dos métodos para avaliação da gordura corporal em crianças e adolescentes por meio de modelos multicompartimen-tais: uma revisão sistemática. Revista da Associação Médica Brasileira, 59.

Siri, W.E. (1961). Body composition from fluid spaces and density: analysis of methods. Nutrition, 9:480-491.

Streiner, D. L., & Cairney, J. (2007). What's under the ROC? An introduction to receiver operating characteristics curves. Can J Psychiatry, 52(2), 121-128. doi:10.1177/070674370705200210

Visser, M., van den Heuvel, E., & Deurenberg, P. (1994). Prediction equations for the estimation of body composition in the elderly using anthropometric data. Br J Nutr, 71(6), 823-833. doi:10.1079/bjn19940189

Westbury, L. D., Beaudart, C., Bruyère, O., Cauley, J. A., Cawthon, P., Cruz-Jentoft, A. J., . . . Cooper, C. (2023). Recent sarcopenia definitions-prevalence, agreement and mortality associations among men: Findings from popula-tion-based cohorts. J Cachexia Sarcopenia Muscle, 14(1), 565-575. doi:10.1002/jcsm.13160

Woolcott, O. O., & Bergman, R. N. (2018). Relative fat mass (RFM) as a new estimator of whole-body fat percentage ─ A cross-sectional study in American adult individuals. Scientific Reports, 8(1), 10980. doi:10.1038/s41598-018-29362-1

Downloads

Published

2024-10-02

How to Cite

De Oliveira Damasceno, V., Macedo Vianna, J. ., Barreiros Cardoso Bomfim, A., EDSON DE SOUZA, D., Felix da Silva, J., Vinícius Letieri, R., Dos Santos Costa, A., & Perrout de Lima, J. (2024). What is the best predictor of body fat percentage for older brazilian women?. Retos, 59, 401–410. https://doi.org/10.47197/retos.v59.104031

Issue

Section

Original Research Article

Most read articles by the same author(s)