Analysis of the factors of heart rate variability affected after a hypoxia tolerance test as a function of gender

Authors

DOI:

https://doi.org/10.47197/retos.v55.102983

Keywords:

Heart rate variability, normobaric hypoxia, stress, autonomic nervous system

Abstract

Heart rate variability (HRV), the variation of time intervals between heartbeats, reflects the result of the interaction between the autonomic nervous system and the cardiovascular system. Hypoxia is a stressor that causes changes in HRV and a decrease in arterial oxygen saturation (SaO2). The aim of our study is to analyse if the time and frequency domains of HRV are affected after a hypoxia tolerance test in healthy participants as a function of gender. Material and methods: 23 healthy volunteers (11 women and 12 men) with a mean age of 23.08±2.99 performed a hypoxia tolerance test (11%, 5050 m) with the iAltitude simulator. Heart rate and SaO2 were monitored during the test and HRV frequency domain (FD) and time domain (TD) data were obtained. We analysed the five minutes before and after each session. Outcomes: Simulated altitude-induced hypoxia can cause changes in HRV in a group of healthy individuals. Statistically significant differences were also found between before and after the normobaric hypoxia test in the time-domain variables RRm, SDNN, HRm, HR STD, pNN50. In addition, in women statistically significant differences were found in RMSSD, and in the frequency-domain variables HF and LF/HF. While in males, statistically significant differences were found in SDNN. In both men and women, significant differences were observed in RRm, HRm and pNN50. Conclusion: The differences found in HRV after the hypoxia tolerance test indicate that females show a greater activation of the parasympathetic nervous system compared to males. While males showed greater sympathetic activation.

Keywords: Heart rate variability, normobaric hypoxia, stress, autonomic nervous system.

References

Aebi, MR., Bourdillon, N., Bron, D., Millet, GP. (2020). Minimal Influence of Hypobaria on Heart Rate Variability in Hypoxia and Normoxia. Front Physiol, 11, 1072. doi: 10.3389/fphys.2020.01072.

Albertus-Cámara, I., Rochel-Vera, C., Lomas-Albaladejo, J-L., Ferrer-López, V., Martínez-González-Moro, I. (2023). Ventilatory Pattern Influences Tolerance to Normobaric Hypoxia in Healthy Adults. International Journal of Environmental Research and Public Health, 20, 4935. https://doi.org/10.3390/ijerph20064935.

Almeida-Santos, MA., Barreto-Filho, JA., Oliveira, JL., Reis, FP., da Cunha Oliveira, CC., Sousa, AC. (2016). Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr, 63, 1-8. doi: 10.1016/j.archger.2015.11.011.

Barreto, A. C., Medeiros, A. P., Araujo, G. da S., Vale, R., Vianna, J. M., Alkimin, R., Serra, R., Leitão, L., Reis, V. M., & Novaes, J. da S. (2023). Variabilidad de la frecuencia cardíaca y de la presión arterial durante y después de tres sesiones de CrossFit® (Heart rate variability and blood pressure during and after three CrossFit® sessions). Re-tos, 47, 311–316. https://doi.org/10.47197/retos.v47.93780

Basualto-Alarcón, C., Rodas, G., Galilea, PA., Riera, J., Pagés, T., Ricart, A., et al. (2012). Cardiorespiratory param-eters during submaximal exercise under acute exposure to normobaric and hypobaric hypoxia. Apunts Med Esport, 47, 65-72. DOI: 10.1016/j.apunts.2011.11.005.

Bhattarai, P., Paudel, BH., Thakur, D., Bhattarai, B., Subedi, B., Khadka, R. (2018). Effect of long-term high altitude exposure on cardiovascular autonomic adjustment during rest and post-exercise recovery. Ann Occup Environ Med, 30, 34. doi: 10.1186/s40557-018-0240-1.

Botek, M., Krejčí, J., De Smet, S., Gába, A., McKune, AJ. (2015). Heart rate variability and arterial oxygen saturation response during extreme normobaric hypoxia. Auton Neurosci, 190, 40-5. doi: 10.1016/j.autneu.2015.04.001.

Botek, M., Krejčí, J., McKune, A. (2018). Sex Differences in Autonomic Cardiac Control and Oxygen Saturation Re-sponse to Short-Term Normobaric Hypoxia and Following Recovery: Effect of Aerobic Fitness. Front Endocrinol, 9, 697. doi: 10.3389/fendo.2018.00697.

Buchheit, M., Richard, R., Doutreleau, S., Lonsdorfer-Wolf, E., Brandenberger, G., Simon, C. (2004). Effect of acute hypoxia on heart rate variability at rest and during exercise. Int J Sports Med, 25(4), 264-9. doi: 10.1055/s-2004-819938.

Fatisson, J., Oswald, V., Lalonde, F. (2016). Influence diagram of physiological and environmental factors affecting heart rate variability: an extended literature overview. Heart Int, 11(1), e32-e40. doi: 10.5301/heartint.5000232.

Haase, VH. (2013). Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev, 27(1), 41-53. doi: 10.1016/j.blre.2012.12.003.

Hinde, K., White, G., Armstrong, N. (2021). Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors, 21(4), 1061. doi: 10.3390/s21041061.

Karinen, H. M., Uusitalo, A., Vähä-Ypyä, H., Kähönen, M., Peltonen, J. E., Stein, P. K., Viik, J., Tikkanen, H. O. (2012). Heart rate variability changes at 2400 m altitude predicts acute mountain sickness on further ascent at 3000-4300 m altitudes. Frontiers in physiology, 3, 336. https://doi.org/10.3389/fphys.2012.00336

Krejcˇí, J., Botek, M., McKune, A. (2018). Dynamics of the heart rate variability and oxygen saturation response to acute normobaric hypoxia within the first 10min of exposure. Clin Physiol Funct Imaging, 38, 56-62. doi: 10.1111/cpf.12381.

Levine, BD. (2002). Intermittent hypoxic training: fact and fancy. High Alt Med Biol, 3(2), 177-93. doi: 10.1089/15270290260131911.

Li, Y., Li, J., Liu, J., Xue, Y., Cao, Z., Liu, C. (2021). Variations of Time Irreversibility of Heart Rate Variability Under Normobaric Hypoxic Exposure. Front Physiol, 12, 607356. doi: 10.3389/fphys.2021.607356.

Lizamore, CA., Hamlin, MJ. (2017). The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. High Alt Med Biol, 18(4), 305-321. doi: 10.1089/ham.2017.0050.

Młyńczak, M., Krysztofiak, H. (2019). Cardiorespiratory Temporal Causal Links and the Differences by Sport or Lack Thereof. Front Physiol, 10, 45. doi: 10.3389/fphys.2019.00045.

Mol, MBA., Strous, MTA., van Osch, FHM., Vogelaar, FJ., Barten, DG., Farchi, M., Foudraine, NA., Gidron, Y. (2021). Heart-rate-variability (HRV) predicts outcomes in COVID-19. PLoS One, 16(10), e0258841. doi: 10.1371/journal.pone.0258841.

Nieto-Jimenez, C., Ruso-Álvarez, J., Elena Pardos-Mainer, E., & Naranjo Orellana, J. (2020). La variabilidad de la frecuencia cardiaca en el control del entrenamiento en un corredor de Ironman. Estudio de caso (Heart Rate Vari-bility in the training monitoring of an Ironman runner. A case study). Retos, 37, 339–343. https://doi.org/10.47197/retos.v37i37.73873

Plaza-Florido, A., Migueles, JH., Mora-Gonzalez, J., Molina-Garcia, P., Rodriguez-Ayllon, M., Cadenas-Sanchez, C., Esteban-Cornejo, I., Navarrete, S., Maria Lozano, R., Michels, N., Sacha, J., Ortega, FB. (2019). The Role of Heart Rate on the Associations Between Body Composition and Heart Rate Variability in Children With Over-weight/Obesity: The ActiveBrains Project. Front Physiol, 10, 895. doi: 10.3389/fphys.2019.00895.

Povea, C., Schmitt, L., Brugniaux, J., Nicolet, G., Richalet, JP., Fouillot, JP. (2005). Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Alt Med Biol, 6(3), 215-25. doi: 10.1089/ham.2005.6.215.

Rodas, G., Pedret, C., Capdevila, L., Ramos, J. (2008). Variabilidad de la frecuencia cardíaca: concepto, medidas y relación con aspectos clínicos (I). Arch Med Deporte, 23(1), 41-47.

Serebrovskaya, TV., & Xi, L. (2016). Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Exp Biol Med (Maywood), 241(15), 1708-23. doi: 10.1177/1535370216657614.

Shaffer, F., & Ginsberg, JP. (2017). An Overview of Heart Rate Variability Metrics and Norms. Front Public Health, 5, 258. doi: 10.3389/fpubh.2017.00258.

Singh, N., Moneghetti, KJ., Christle, JW., Hadley, D., Plews, D., Froelicher, V. (2018). Heart Rate Variability: An Old Metric with New Meaning in the Era of using mHealth Technologies for Health and Exercise Training Guid-ance. Part One: Physiology and Methods. Arrhythm Electrophysiol Rev, 7(3), 193-198. doi: 10.15420/aer.2018.27.2.

Taralov, Z., Terziyski, K., Dimov, P., Marinov, B., Tarvainen, M.P., Perini, R., & Kostianev, S. (2015). Assessment of the acute impact of normobaric hypoxia as a part of an intermittent hypoxic training on heart rate variability. Cor et Vasa, 57(4), e251-256. doi: 10.1016/j.crvasa.2015.05.010

Tiwari, R., Kumar, R., Malik, S., Raj, T., Kumar, P. (2021). Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr Cardiol Rev, 17(5), 11-20. doi: 10.2174/1573403X16999201231203854.

Uryumtsev, DY., Gultyaeva, VV., Zinchenko, MI., Baranov, VI., Melnikov, VN., Balioz, NV., Krivoschekov, SG. (2020). Effect of Acute Hypoxia on Cardiorespiratory Coherence in Male Runners. Front Physiol, 11, 630. doi: 10.3389/fphys.2020.00630

Wille, M., Mairer, K., Gatterer, H., Philippe, M., Faulhaber, M., Burtscher, M. (2012). Changes in cardiac autonom-ic activity during a passive 8-hour acute exposure to 5,500 m normobaric hypoxia are not related to the develop-ment of acute mountain sickness. Int J Sports Med, 33(3), 186-91. doi: 10.1055/s-0031-1291325.

World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-4. doi: 10.1001/jama.2013.281053.

Yuksel, R., Yuksel, RN., Sengezer, T., Dane, S. (2016). Autonomic Cardiac Activity in Patients with Smoking and Alcohol Addiction by Heart Rate Variability Analysis. Clin Invest Med, 39(6), 275-19.

Downloads

Published

2024-03-27

How to Cite

Rochel Vera, C., Albertus Cámara, I. ., & Martínez González-Moro, I. (2024). Analysis of the factors of heart rate variability affected after a hypoxia tolerance test as a function of gender. Retos, 55, 177–183. https://doi.org/10.47197/retos.v55.102983

Issue

Section

Original Research Article