The effects of citrulline supplementation on athlete´s performance: systematic review
DOI:
https://doi.org/10.47197/retos.v64.102783Keywords:
L-citrullina, Citrullina Malate, performance, trainningAbstract
Background: Citrulline is a non-essential amino acid that may enhance exercise performance and reduce soreness after exercise. This systematic review aims to determine the possible outcomes of L-citrulline of citrulline malate supplementation.
Methods: The effects of L-citrulline or Citrulline Malate on trained individuals or professional athletes were examined in a comprehensive literature search using PubMed from 2010 to 2023. A total of 10 studies that met the inclusion and exclusion criteria were selected. Randomized and double-blind study designs were used to include in this review.
Findings: L-citrulline or citrulline malate supplementation produced either positive or negative effects. By boosting repetitions, lowering RPE, or reducing muscular exhaustion, six out of ten trials found that taking L-citrulline or citrulline malate improved performance. However, four out of ten studies found that taking L-citrulline or citrulline malate only has a minor or nonexistent advantage.
Discussion: Nearly half of them reported no differences, while the other half reported successes. Numerous studies have shown that citrulline supplements minimize muscular soreness. Some research claims to have accomplished more repetitions, whilst other studies claim that there has been no difference in the number of repetitions attained.
Conclusion: Supplementing with L-citrulline or citrulline malate is still debatable. Regarding whether it truly works or not in certain sports, there were no definitive responses. Additional research is required on this subject as these data are insufficient to draw any meaningful conclusions.
References
Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal Muscle Fatigue: Cellular Mechanisms. Physiological Reviews, 88(1), 287–332. https://doi:10.1152/physrev.00015.2007
Bailey, S. J., Blackwell, J. R., Lord, T., Vanhatalo, A., Winyard, P. G., & Jones, A. M. (2015). l-Citrulline supplementation improves O2 uptake kinetics and high-intensity exercise performance in humans. Journal of applied physiology (Bethesda, Md. : 1985), 119(4), 385–395. https://doi.org/10.1152/japplphysiol.00192.2014
Bendahan, D., Mattei, J. P., Ghattas, B., Confort-Gouny, S., Le Guern, M. E., & Cozzone, P. J. (2002). Citrulline/malate promotes aerobic energy production in human exercising muscle. British journal of sports medicine, 36(4), 282–289. https://doi.org/10.1136/bjsm.36.4.282
Breuillard, C., Cynober, L., & Moinard, C. (2015). Citrulline and nitrogen homeostasis: an overview. Amino acids, 47(4), 685–691. https://doi.org/10.1007/s00726-015-1932-2
Callis, A., Magnan de Bornier, B., Serrano, J. J., Bellet, H., & Saumade, R. (1991). Activity of citrulline malate on acid-base balance and blood ammonia and amino acid levels. Study in the animal and in man. Arzneimittel-Forschung, 41(6), 660–663.
Chappell, A. J., Allwood, D. M., Johns, R., Brown, S., Sultana, K., Anand, A., & Simper, T. (2018). Citrulline malate supplementation does not improve German Volume Training performance or reduce muscle soreness in moderately trained males and females. Journal of the International Society of Sports Nutrition, 15(1), 42. https://doi.org/10.1186/s12970-018-0245-8
Cunniffe, B., Papageorgiou, M., OʼBrien, B., Davies, N. A., Grimble, G. K., & Cardinale, M. (2016). Acute Citrulline-Malate Supplementation and High-Intensity Cycling Performance. Journal of strength and conditioning research, 30(9), 2638–2647. https://doi.org/10.1519/JSC.0000000000001338
Curis, E., Nicolis, I., Moinard, C., Osowska, S., Zerrouk, N., Bénazeth, S., & Cynober, L. (2005). Almost all about citrulline in mammals. Amino acids, 29(3), 177–205. https://doi.org/10.1007/s00726-005-0235-4
Esen, O., Eser, M. C., Abdioglu, M., Benesova, D., Gabrys, T., & Karayigit, R. (2022). Eight Days of L-Citrulline or L-Arginine Supplementation Did Not Improve 200-m and 100-m Swimming Time Trials. International journal of environmental research and public health, 19(8), 4462. https://doi.org/10.3390/ijerph19084462
Fitts R. H. (1994). Cellular mechanisms of muscle fatigue. Physiological reviews, 74(1), 49–94. https://doi.org/10.1152/physrev.1994.74.1.49
Gamboa, A., Figueroa, R., Paranjape, S. Y., Farley, G., Diedrich, A., & Biaggioni, I. (2016). Autonomic Blockade Reverses Endothelial Dysfunction in Obesity-Associated Hypertension. Hypertension (Dallas, Tex.: 1979), 68(4), 1004–1010. https://doi.org/10.1161/HYPERTENSIONAHA.116.07681
Giannesini, B., Le Fur, Y., Cozzone, P. J., Verleye, M., Le Guern, M. E., & Bendahan, D. (2011). Citrulline malate supplementation increases muscle efficiency in rat skeletal muscle. European journal of pharmacology, 667(1-3), 100–104. https://doi.org/10.1016/j.ejphar.2011.05.068
Glenn, J. M., Gray, M., Jensen, A., Stone, M. S., & Vincenzo, J. L. (2016). Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. European journal of sport science, 16(8), 1095–1103. https://doi.org/10.1080/17461391.2016.1158321
Glenn, J. M., Gray, M., Wethington, L. N., Stone, M. S., Stewart, R. W., Jr, & Moyen, N. E. (2017). Acute citrulline malate supplementation improves upper- and lower-body submaximal weightlifting exercise performance in resistance-trained females. European journal of nutrition, 56(2), 775–784. https://doi.org/10.1007/s00394-015-1124-6
Heunks, L. M., Machiels, H. A., Dekhuijzen, P. N., Prakash, Y. S., & Sieck, G. C. (2001). Nitric oxide affects sarcoplasmic calcium release in skeletal myotubes. Journal of applied physiology (Bethesda, Md.: 1985), 91(5), 2117–2124. https://doi.org/10.1152/jappl.2001.91.5.2117
Joyner, M. J., & Dietz, N. M. (1997). Nitric oxide and vasodilation in human limbs. Journal of applied physiology (Bethesda, Md.: 1985), 83(6), 1785–1796. https://doi.org/10.1152/jappl.1997.83.6.1785
Moinard, C., Maccario, J., Walrand, S., Lasserre, V., Marc, J., Boirie, Y., & Cynober, L. (2016). Arginine behaviour after arginine or citrulline administration in older subjects. The British journal of nutrition, 115(3), 399–404. https://doi.org/10.1017/S0007114515004638
Pérez-Guisado, J., & Jakeman, P. M. (2010). Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. Journal of strength and conditioning research, 24(5), 1215–1222. https://doi.org/10.1519/JSC.0b013e3181cb28e0
Poderoso, J. J., Helfenberger, K., & Poderoso, C. (2019). The effect of nitric oxide on mitochondrial respiration. Nitric oxide: biology and chemistry, 88, 61–72. https://doi.org/10.1016/j.niox.2019.04.005
Ramos, J. J., Montoya Miñano, J. J., Miguel Tobal, F., Jodrá Jiménez, P., & Domínguez, R. (2021). Effect of beet juice supplementation (BJ) on neuromuscular response: a systematic review. Retos, 39, 893–901. https://doi.org/10.47197/retos.v0i39.79650
Schaefer, A., Piquard, F., Geny, B., Doutreleau, S., Lampert, E., Mettauer, B., & Lonsdorfer, J. (2002). L-Arginine Reduces Exercise-Induced Increase in Plasma Lactate and Ammonia. International Journal of Sports Medicine, 23(6), 403–407. https://doi:10.1055/s-2002-33743
Smith, L. W., Smith, J. D., & Criswell, D. S. (2002). Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. Journal of applied physiology (Bethesda, Md. : 1985), 92(5), 2005–2011. https://doi.org/10.1152/japplphysiol.00950.2001
Stanelle, S. T., McLaughlin, K. L., & Crouse, S. F. (2020). One week of L-citrulline supplementation improves performance in trained cyclists. The Journal of Strength & Conditioning Research, 34(3), 647-652. https://doi: 10.1519/JSC.0000000000003418.
Suzuki, T., Morita, M., Kobayashi, Y., & Kamimura, A. (2016). Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study. Journal of the International Society of Sports Nutrition, 13, 6. https://doi.org/10.1186/s12970-016-0117-z
Tarazona-Díaz, M. P., Alacid, F., Carrasco, M., Martínez, I., & Aguayo, E. (2013). Watermelon juice: potential functional drink for sore muscle relief in athletes. Journal of agricultural and food chemistry, 61(31), 7522–7528. https://doi.org/10.1021/jf400964r
van de Poll, M. C., Soeters, P. B., Deutz, N. E., Fearon, K. C., & Dejong, C. H. (2004). Renal metabolism of amino acids: its role in interorgan amino acid exchange. The American journal of clinical nutrition, 79(2), 185–197. https://doi.org/10.1093/ajcn/79.2.185
Vanhoutte, P. M., Zhao, Y., Xu, A., & Leung, S. W. (2016). Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circulation research, 119(2), 375–396. https://doi.org/10.1161/CIRCRESAHA.116.306531
Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020). Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300
Wagenmakers A. J. (1998). Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exercise and sport sciences reviews, 26, 287–314.
Wax, B., Kavazis, A. N., Weldon, K., & Sperlak, J. (2015). Effects of supplemental citrulline malate ingestion during repeated bouts of lower-body exercise in advanced weightlifters. Journal of strength and conditioning research, 29(3), 786–792. https://doi.org/10.1519/JSC.0000000000000670
Wax, B., Kavazis, A. N., & Luckett, W. (2016). Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males. Journal of dietary supplements, 13(3), 269–282. https://doi.org/10.3109/19390211.2015.1008615
Wijnands, K. A., Meesters, D. M., van Barneveld, K. W., Visschers, R. G., Briedé, J. J., Vandendriessche, B., van Eijk, H. M., Bessems, B. A., van den Hoven, N., von Wintersdorff, C. J., Brouckaert, P., Bouvy, N. D., Lamers, W. H., Cauwels, A., & Poeze, M. (2015). Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity. Nutrients, 7(7), 5217–5238. https://doi.org/10.3390/nu7075217
Zhao, Y., Vanhoutte, P. M., & Leung, S. W. (2015). Vascular nitric oxide: Beyond eNOS. Journal of pharmacological sciences, 129(2), 83–94. https://doi.org/10.1016/j.jphs.2015.09.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Silvia Burgos, Valentin Emilio Fernández Elias, Aysu Dursun

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.