FNIP-1 Expression in Mice Muscle Negatively Correlated with Myoglobin Level and Endurance Performance on Treadmill Run Test

Authors

  • Dita Yuliastrid Sports Science Study Program, Faculty of Sports and Health Sciences, Universitas Negeri Surabaya, Surabaya, East Java, Indonesia
  • Bambang Purwanto Department of Medical Physiology and Biochemistry, University Airlangga, Surabaya, East Java, Indonesia
  • Nining Widyah Kusnanik Sport Coaching Education, Faculty of Sports and Health Sciences, Universitas Negeri Surabaya, Surabaya, East Java, Indonesia
  • Heni Yuli Handayani Sports Education Study Program, STKIP PGRI Bangkalan, East Java, Indonesia
  • Septyaningrum Putri Purwoto Sports Education Study Program, STKIP PGRI Bangkalan, East Java, Indonesia

DOI:

https://doi.org/10.47197/retos.v53.102505

Keywords:

FNIP-1, muscle, endurance, myoglobin, healthy lifestyle

Abstract

Previously, FNIP-1 was found to play a critical role in the coupling of mitochondria function to restore ATP. Mitochondria was need to be supplied sufficient oxygen by myoglobin in the myocyte. We proposed that FNIP-1 also regulated myoglobin levels to support endurance performance. This study aimed to investigate whether FNIP-1 expression in muscle was correlated with myoglobin level and endurance performance on the treadmill run test. Male adult balb/c mice performed a run on the treadmill for as long as possible. The duration of running was measured as endurance performance. Its calf muscles were analyzed for myoglobin level and FNIP-1 expression. Lower FNIP-1 expression in calf muscle was found on higher levels of myoglobin and the longer duration of running on a treadmill. The Pearson test showed that the P value was <0.05, which indicated that there was a correlation between FNIP-1 and myoglobin with a score of -0.77, which indicated that there was a negative correlation. The Spearman test also showed that the P value was <0.05, which indicated that there was a correlation between FNIP-1 and endurance performance with a score of -0.70, which indicated that there was a negative correlation. So, FNIP-1 expression negatively correlated with myoglobin level and endurance performance of mice. Further study needs to investigate the FNIP-1 expression in human muscle to look at its correlation with the level of lactate, oxygen saturation (SaO2), oxygen fraction (FiO2), and maximum volume of oxygen uptake (VO2 max).

Keywords: FNIP-1, muscle, endurance, myoglobin, healthy lifestyle.

References

Baba, M., Keller, J. R., Sun, H. W., Resch, W., Kuchen, S., Suh, H. C., Hasumi, H., Hasumi, Y., Kieffer-Kwon, K. R., Gonzalez, C. G., Hughes, R. M., Klein, M. E., Oh, H. F., Bible, P., Southon, E., Tessarollo, L., Schmidt, L. S., Linehan, W. M., & Casellas, R. (2012). The folliculin-FNIP1 pathway deleted in human Birt-Hogg-Dubé syndrome is required for murine B-cell development. Blood, 120(6), 1254–1261. https://doi.org/10.1182/blood-2012-02-410407

Cech, D. J., & Martin, S. “Tink.” (2012). Functional Movement Development Across The Life Span. Saunders. Elsevier Inc. https://doi.org/10.1016/C2009-0-60730-3

Contreras, M. M., Perez Garcia, A. I., Ramos-Jiménez, A., Torres, R. P. H., & Chavez-Guevara, I. A. (2023). Applications of Maximum Fat Oxidation and FATmax in the evaluation of sports performance in endurance-athletes: a narrative review. Retos, 47, 806–813. https://recyt.fecyt.es/index.php/retos/index

Costill, W. L. K. J. H. W. D. L. (2012). Physiology of Sport and Exercise (Amy N. Tocco, Ed.; 5th ed.). Human Kinetics Publishers.

Diaz-Ochoa, A., Gomez-Renand, V. M., Hoyos-Flores, J. R., & Hernandez-Cruz, G. (2023). Variations in physical performance during a competitive season in Mexican female varsity soccer players by playing position. Retos, 49, 300–306. https://doi.org/10.47197/retos.v49.98002

Dougherty, J. P., Springer, D. A., & Gershengorn, M. C. (2016). The treadmill fatigue test: A simple, high-throughput assay of fatigue-like behavior for the mouse. Journal of Visualized Experiments, 2016(111), 1–7. https://doi.org/10.3791/54052

Glancy, B., Kane, D. A., Kavazis, A. N., Goodwin, M. L., Willis, W. T., & Gladden, L. B. (2021). Mitochondrial lactate metabolism: history and implications for exercise and disease. Journal of Physiology, 599(3), 863–888. https://doi.org/10.1113/JP278930

Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558–569. https://doi.org/10.1177/193229680700100414

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4

Hasumi, Y., Baba, M., Hasumi, H., Huang, Y., Lang, M., Reindorf, R., Oh, H. bin, Sciarretta, S., Nagashima, K., Haines, D. C., Schneider, M. D., Adelstein, R. S., Schmidt, L. S., Sadoshima, J., & Linehan, W. M. (2014). Folliculin (Flcn) inactivation leads to murine cardiac hypertrophy through mTORC1 deregulation. Human Molecular Genetics, 23(21), 5706–5719. https://doi.org/10.1093/hmg/ddu286

Herrmann, K., Pistollato, F., & Stephens, M. L. (2019). Beyond the 3Rs: Expanding the use of human-relevant replacement methods in biomedical research. Altex, 36(3), 343–352. https://doi.org/10.14573/altex.1907031

Kamga, C., Krishnamurthy, S., & Shiva, S. (2012). Myoglobin and Mitochondria: A relationship bound by Oxygen and Nitric Oxide. Nitric Oxide, 26(4), 251–258. https://doi.org/10.1016/j.niox.2012.03.005

Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2012). Physiology of sport and exercise. Human Kinetics Publishers. https://doi.org/10.1007/978-981-10-0767-5_35

Kul, M., Turkmen, M., Ceylan, R., Sipal, O., Cabuk, R., Akova, A., Aksoy, O. F., & Adatepe, E. (2022). High-Intensity Interval Training with Cycling and Calisthenics: Effects on Aerobic Endurance, Critical Power, Sprint and Maximal Strength Performance in Sedentary Males. Retos, 46, 538–544. https://doi.org/10.47197/retos.v46.94255

Lemeshow, S., Hosmer, D. W., Klar, J., & Lwanga, S. K. (1991). Adequacy of Sample Size in Health Studies. (Vol. 47, Issue 1). JOHN WILEY and SONS England. https://doi.org/10.2307/2532527

Liu, J., Liang, X., Zhou, D., Lai, L., Xiao, L., Liu, L., Fu, T., Kong, Y., Zhou, Q., Vega, R. B., Zhu, M., Kelly, D. P., Gao, X., & Gan, Z. (2016). Coupling of mitochondrial function and skeletal muscle fiber type by a miR‐499/Fnip1/ AMPK circuit . EMBO Molecular Medicine, 8(10), 1212–1228. https://doi.org/10.15252/emmm.201606372

Masuda, K., Yamada, T., Ishizawa, R., & Takakura, H. (2013). Role of Myoglobin in Regulating Respiration. The Journal of Physical Fitness and Sports Medicine, 2(1), 9–16. https://doi.org/10.1007/978-1-4615-0075-9_67

Mi, M., Gu, Y., Lang, H., Wang, X., Chen, K., Gong, X., Zhou, M., Ran, L., & Zhu, J. (2017). Dihydromyricetin prevents obesity-induced slow-twitch-fiber reduction partially via FLCN/FNIP1/AMPK pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(6), 1282–1291. https://doi.org/10.1016/j.bbadis.2017.03.019

Navalta, J. W., Stone, W. J., & Lyons, T. S. (2019). Ethical Issues Relating to Scientific Discovery in Exercise Science. International Journal of Exercise Science, 12(1), 1–8.

Nemeth, P. M., & Lowry, O. H. (1991). Myoglobin levels in individual human skeletal muscle fibers of different types. Journal of Histochemistry & Cytochemistry, 32(11), 1211–1216. https://doi.org/10.110.1177/32.11.6491255

Ordway, G. A., & Garry, D. J. (2004). Myoglobin: An essential hemoprotein in striated muscle. Journal of Experimental Biology, 207(20), 3441–3446. https://doi.org/10.1242/jeb.01172

Petrosino, J. M., Heiss, V. J., Maurya, S. K., Kalyanasundaram, A., Periasamy, M., Lafountain, R. A., Wilson, J. M., Simonetti, O. P., & Ziouzenkova, O. (2016). Graded maximal exercise testing to assess mouse cardio-metabolic phenotypes. PLoS ONE, 11(2), 1–21. https://doi.org/10.1371/journal.pone.0148010

Postnikova, G. B., & Shekhovtsova, E. A. (2018). Myoglobin: Oxygen Depot or Oxygen Transporter to Mitochondria? A Novel Mechanism of Myoglobin Deoxygenation in Cells (review). Biochemistry (Moscow), 83(2), 168–183. https://doi.org/10.1134/S0006297918020098

Ramírez, J. A., Iwata, T., Park, H., Tsang, M., Kang, J., Cui, K., Kwong, W., James, R. G., Baba, M., Schmidt, L. S., & Iritani, B. M. (2019). Folliculin Interacting Protein 1 Maintains Metabolic Homeostasis during B Cell Development by Modulating AMPK, mTORC1, and TFE3. The Journal of Immunology, 203(11), 2899–2908. https://doi.org/10.4049/jimmunol.1900395

Reyes, N. L., Banks, G. B., Tsang, M., Margineantu, D., Gu, H., Djukovic, D., Chan, J., Torres, M., Liggitt, H. D., Hirenallur-S, D. K., Hockenbery, D. M., Raftery, D., & Iritani, B. M. (2015). Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 424–429. https://doi.org/10.1073/pnas.1413021112

Ruanpang, J., Pleumsamran, A., Pleumsamran, J., & Mingmalairak, S. (2018). Effect of a high-fat diet and cholesterol levels on depression-like behavior in mice. Chiang Mai University Journal of Natural Sciences, 17(2), 161–173. https://doi.org/10.12982/CMUJNS.2018.0012

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194–1209. https://doi.org/10.47197/retos.v51.101189.

Sherwood, L. (2016). Human Physiology_ From Cells to Systems (IX). Cengage Learning.

Smrkolj, L., & Škof, B. (2013). Factors of Success in Endurance Sports; Changing of Muscle Fiber Type. Acta Medica Medianae, 1, 69–74. https://doi.org/10.5633/amm.2013.0413

Suhadi, V., Setyo Kriswanto, E., & Nopembri, S. (2023). Muscular Endurance and Strength as Predominant Factors on Spike among Young Volleyball Athletes. Retos, 50, 349–356. https://recyt.fecyt.es/index.php/retos/index

Talbot, J., & Maves, L. (2016). Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdisciplinary Reviews: Developmental Biology, 5(4), 518–534. https://doi.org/10.1002/wdev.230

Theofilidis, G., Bogdanis, G. C., Koutedakis, Y., & Karatzaferi, C. (2018). Monitoring exercise-induced muscle fatigue and adaptations: Making sense of popular or emerging indices and biomarkers. Sports, 6(4), 1–15. https://doi.org/10.3390/sports6040153

Van Der Zwaard, S., Brocherie, F., & Jaspers, R. T. (2021). Under the Hood: Skeletal Muscle Determinants of Endurance Performance. Frontiers in Sports and Active Living, 3, 1–11. https://doi.org/10.3389/fspor.2021.719434

Van Der Zwaard, S., Van Der Laarse, W. J., Weide, G., Bloemers, F. W., Hofmijster, M. J., Levels, K., Noordhof, D. A., De Koning, J. J., De Ruiter, C. J., & Jaspers, R. T. (2018). Critical determinants of combined sprint and endurance performance: An integrative analysis from muscle fiber to the human body. FASEB Journal, 32(4), 2110–2123. https://doi.org/10.1096/fj.201700827R

Wilson, D. F. (2017). Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. Journal of Physiology, 595(23), 7023–7038. https://doi.org/10.1113/JP273839

Xiao, L., Liu, J., Sun, Z., Yin, Y., Mao, Y., Xu, D., Liu, L., Xu, Z., Guo, Q., Ding, C., Sun, W., Yang, L., Zhou, Z., Zhou, D., Fu, T., Zhou, W., Zhu, Y., Chen, X. W., Li, J. Z., … Gan, Z. (2021). AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genetics, 17(3), 1–27. https://doi.org/10.1371/journal.pgen.1009488

Downloads

Published

2024-04-01

How to Cite

Yuliastrid, D., Purwanto, B., Kusnanik, N. W., Handayani, H. Y., & Purwoto, S. P. (2024). FNIP-1 Expression in Mice Muscle Negatively Correlated with Myoglobin Level and Endurance Performance on Treadmill Run Test. Retos, 53, 157–161. https://doi.org/10.47197/retos.v53.102505

Issue

Section

Original Research Article

Most read articles by the same author(s)