Acute effect of Ischemic Preconditioning in different blood flow restriction compressions on the an-aerobic performance of trained individuals

Authors

  • Pedro Augusto Mariz Dantas Federal Institute of Paraiba (Brazil) https://orcid.org/0000-0001-6933-9983
  • Jefferson Da Silva Novaes Federal University of Juiz de Fora (Brazil)
  • Carlos Renato Paz Federal Institute of Paraiba (Brazil)
  • Natalia Herculano Paz Federal University of Paraiba (Brazil)
  • Adenilson Targino Araújo Júnior Federal Institute of Paraiba (Brazil)
  • Pedro Henrique Marques Lucena Federal University of Paraiba (Brazil)
  • Ana Tereza de Sousa Brito Federal University of Paraiba (Brazil) https://orcid.org/0000-0001-6382-5374
  • Thiago Siqueira Paiva Souza Federal University of Paraiba (Brazil) https://orcid.org/0000-0002-7794-1445
  • Simoni Teixeira Bittar Federal University of Paraiba (Brazil) https://orcid.org/0000-0003-3101-9217
  • Maria do Socorro Cirilo-Sousa Federal University of Paraiba (Brazil)

DOI:

https://doi.org/10.47197/retos.v54.100539

Keywords:

sports performance, anaerobic power, ischemic preconditioning, blood flow restriction, vascular occlusion

Abstract

Purpose: to analyze the acute effect of ischemic preconditioning in different compressions of blood flow restriction on the anaerobic performance of trained individuals. Material & methods: the research has a quasi-experimental characteristic, crossed and randomized design, in which the subjects were their own controls and submitted to four experimental conditions before the RAST anaerobic power test: C1 = without IPC; C2 = IPC at 20 mmHg (SHAM); C3 = IPC at 220 mmHg and C4 = IPC at 100% of the auscultatory pulse (AP). The study included 21 trained individuals (21.0 ± 2.3 years), male, who performed the power test after 4 experimental conditions in a randomized manner. Result: Despite the IPC with 100% of the AP demonstrating a positive trend towards the improvement in the averages of Pmax (∆ = 2.6%), Pmed (∆ = 0.7%), Pmin (∆ = 1.8%) and running time in 35 m (∆ = 0.8%), none of the variables showed a significant effect between the experimental conditions. Conclusions: It is concluded that, even presenting a subtle improvement in the maximum, average and minimum powers in a 35-meter running test when using the compression of 100% of the AP, the IPC did not demonstrate a significant increase in performance. However, an increase of 2.6% in maximum power can represent the difference between first and second place in a high-performance test.

Keywords: sports performance, anaerobic power, ischemic preconditioning, blood flow restriction, vascular occlusion.

 

References

Bedogni, G., Malavolti, M., Severi, S., Poli, M., Mussi, C., Fantuzzi, A. L., & Battistini, N. (2002). Accuracy of an eight-point tactile-electrode impedance method in the assessment of total body water. European Journal of Clinical Nutrition, 56(11), 1143–1148. https://doi.org/10.1038/sj.ejcn.1601466

Caru, M., Levesque, A., Lalonde, F., & Curnier, D. (2019). An overview of ischemic preconditioning in exercise performance: A systematic review. Journal of Sport and Health Science, 00, 1–15. https://doi.org/10.1016/j.jshs.2019.01.008

Chen, Y., Yang, J., Muradov, O., Li, X., Lee, J. K. W., & Qiu, J. (2022). Effect of ischemic preconditioning on maximum accumulated oxygen deficit in 400-meter runners. European Journal of Sport Science, 1–8. https://doi.org/10.1080/17461391.2022.2064769

Cheng, C. F., Kuo, Y. H., Hsu, W. C., Chen, C., & Pan, C. H. (2021). Local and remote ischemic preconditioning improves sprint interval exercise performance in team sport athletes. International Journal of Environmental Research and Public Health, 18(20). https://doi.org/10.3390/ijerph182010653

Cirilo-Sousa, M. do S. (2008). Treinamento Físico Individualizado (Personal Training): abordagem nas diferentes idades, situações especiais e avaliação física (UFPB (ed.); 1st ed.).

Cirilo-Sousa, M. do S., & Rodrigues Neto, G. (2018). Metodologia do treinamento físico com restrição de fluxo sanguíneo. Ideia.

Cocking, S., Ihsan, M., Jones, H., Hansen, C., Timothy Cable, N., Thijssen, D. H. J., & Wilson, M. G. (2021). Repeated sprint cycling performance is not enhanced by ischaemic preconditioning or muscle heating strategies. European Journal of Sport Science, 21(2), 166–175. https://doi.org/10.1080/17461391.2020.1749312

Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 111(2), 530–536. https://doi.org/10.1152/japplphysiol.00266.2011

da Mota, G. R., & Marocolo, M. (2016). The Effects of Ischemic Preconditioning on Human Exercise Performance: A Counterpoint. Sports Medicine, 46(10), 1575–1576. https://doi.org/10.1007/s40279-016-0595-9

da Silva Novaes, J., da Silva Telles, L. G., Monteiro, E. R., da Silva Araujo, G., Vingren, J. L., Silva Panza, P., Reis, V. M., Laterza, M. C., & Vianna, J. M. (2021). Ischemic Preconditioning Improves Resistance Training Session Performance. Journal of Strength and Conditioning Research, 35(11), 2993–2998. https://doi.org/10.1519/JSC.0000000000003532

da Silva Telles, L. G., Leitão, L., da Silva Araújo, G., Serra, R., Junqueira, C. G. S., Ribeiro, A. A. de S., Ribeiro, M. de S., Monteiro, E. R., Vianna, J. M., & Novaes, J. da S. (2023). Remote and local ischemic preconditioning increases isometric strength and muscular endurance in recreational trained individuals. Retos, 47, 941–947. https://recyt.fecyt.es/index.php/retos/article/view/93385

De Groot, P. C. E., Thijssen, D. H. J., Sanchez, M., Ellenkamp, R., & Hopman, M. T. E. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141–146. https://doi.org/10.1007/s00421-009-1195-2

Downey, J. M., Davis, A. M., & Cohen, M. V. (2007). Signaling pathways in ischemic preconditioning. Heart Failure Reviews, 12(3–4), 181–188. https://doi.org/10.1007/s10741-007-9025-2

Ferna, C. (2009). VALIDITY OF THE RUNNING ANAEROBIC SPRINT TEST FOR ASSESSING ANAEROBIC POWER AND PREDICTING SHORT-DISTANCE PERFORMANCES. Journal of Manipulative and Physiological Therapeutics, 10(28), 610–616.

Fostiak, K., Bichowska, M., Trybulski, R., Trabka, B., Krzysztofik, M., Rolnick, N., Filip-Stachnik, A., & Wilk, M. (2022). Acute Effects of Ischemic Intra-Conditioning on 30 m Sprint Performance. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912633

Franchini, E. (2002). Teste anaeróbio de Wingate Conceito e aplicação. Revista Mackenzie de Educação Física e Esporte, 1(1), 11–27.

Gibson, N., Mahony, B., Tracey, C., Fawkner, S., & Murray, A. (2015). Effect of ischemic preconditioning on repeated sprint ability in team sport athletes. Journal of Sports Sciences, 33(11), 1182–1188. https://doi.org/10.1080/02640414.2014.988741

Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671–676. http://www.ncbi.nlm.nih.gov/pubmed/23578975

Gomes, A. C. ., & Souza, J. (2007). Futebol: treinamento desportivo de alto rendimento. Artmed.

Griffin, P. J., Hughes, L., Gissane, C., & Patterson, S. D. (2019). Effects of local versus remote ischemic preconditioning on repeated sprint running performance. The Journal of Sports Medicine and Physical Fitness, 59(2). https://doi.org/10.23736/s0022-4707.18.08400-1

Halson, S. L. (2014). Monitoring Training Load to Understand Fatigue in Athletes. Sports Medicine, 44(S2), 139–147. https://doi.org/10.1007/s40279-014-0253-z

Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., McCrindle, B. W., Wells, G. D., & Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine and Science in Sports and Exercise, 43(7), 1280–1286. https://doi.org/10.1249/MSS.0b013e318206845d

Kellmann, M., & Beckmann, J. (2017). Sport, Recovery, and Performance (M. Kellmann & J. Beckmann (eds.); 1st ed.). Routledge. https://doi.org/10.4324/9781315268149

Lalonde, F., & Curnier, D. (2015). CAN ANAEROBIC PERFORMANCE BE IMPROVED BY REMOTE ISCHEMIC PRECONDITIONING? Journal OfStrength and Conditioning Research, 29(1), 80–85.

Laurentino, G. C., Loenneke, J. P., Mouser, J. G., Buckner, S. L., Counts, B. R., Dankel, S. J., Jessee, M. B., Teixeira, E. L., Mattocks, K. T., Iared, W., Tavares, L. D., & Tricoli, V. (2018). Validity of the Handheld Doppler to Determine Lower-Limb Blood Flow Restriction Pressure for Exercise Protocols. Journal of Strength and Conditioning Research, 00(00), 1–4. https://doi.org/10.1519/jsc.0000000000002665

Lindner, T. D., Scholten, S. D., Halverson, J. M., Baumgarten, K. M., Birger, C. B., & Nowotny, B. G. (2021). The Acute Effects of Ischemic Preconditioning on Power and Sprint Performance. South Dakota Medicine, 74(5), 210–219.

Matsudo, S., Araújo, T., Matsudo, V., Andrade, D., Andrade, E., Oliveira, L. C., & Braggion, G. (2012). Questionário Internacional De Atividade Física (Ipaq): Estupo De Validade E Reprodutibilidade No Brasil. Revista Brasileira de Atividade Física & Saúde, 6(2), 5–18. https://doi.org/10.12820/rbafs.v.6n2p5-18

Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124–1136. https://doi.org/10.1161/01.CIR.74.5.1124

Paixão, R. C., Da Mota, G. R., & Marocolo, M. (2014). Acute Effect of Ischemic Preconditioning is Detrimental to Anaerobic Performance in Cyclists. International Journal of Sports Medicine, 35(11), 912–915. https://doi.org/10.1055/s-0034-1372628

Portenga, S. T., Aoyagi, M. W., & Cohen, A. B. (2017). Helping to build a profession: A working definition of sport and performance psychology. Journal of Sport Psychology in Action, 8(1), 47–59. https://doi.org/10.1080/21520704.2016.1227413

Resnick, H., Lindsay, R., Mcdermott, M., Devereux, R., Jones, K., Fabsitz, R., & Howard, B. (2004). Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality. Circulation, 109(6), 733–739.

Slysz, J. T., Petrick, H. L., Marrow, J. P., & Burr, J. F. (2020). An examination of individual responses to ischemic preconditioning and the effect of repeated ischemic preconditioning on cycling performance. European Journal of Sport Science, 20(5), 633–640. https://doi.org/10.1080/17461391.2019.1651401

Thompson, K. M. A., Whinton, A. K., Ferth, S., Spriet, L. L., & Burr, J. F. (2018). Ischemic Pre-Conditioning Does Not Influence Maximal Sprint Acceleration Performance. International Journal of Sports Physiology and Performance, January, 1–16. https://doi.org/10.1123/ijspp.2017-0540

Wiggins, C. C., Constantini, K., Paris, H. L., Mickleborough, T. D., & Chapman, R. F. (2019). Ischemic Preconditioning, O 2 Kinetics, and Performance in Normoxia and Hypoxia. Medicine and Science in Sports and Exercise, 51(5), 900–911. https://doi.org/10.1249/MSS.0000000000001882

Wilmore, J. H., & Costill, D. L. (2008). Physiology of sport and exercise (4th ed.). Human Kinetics.

Downloads

Published

2024-05-01

How to Cite

Dantas, P. A. M., Da Silva Novaes , J., Paz, C. R. ., Paz, N. H. ., Araújo Júnior, A. T., Lucena, P. H. M., Brito, A. T. de S., Souza , T. S. P. ., Bittar, S. T., & Cirilo-Sousa, M. do S. (2024). Acute effect of Ischemic Preconditioning in different blood flow restriction compressions on the an-aerobic performance of trained individuals. Retos, 54, 721–727. https://doi.org/10.47197/retos.v54.100539

Issue

Section

Original Research Article

Most read articles by the same author(s)