Efecto del calzado deportivo inestable sobre los impactos de aceleración y la temperatura superficial plantar durante la marcha: un estudio piloto (Effect of unstable sports footwear on acceleration impacts and plantar surface temperature during walking: a pilot study)

Autores/as

  • Ignacio Catalá-Vilaplana Grupo de Investigación en Biomecánica Deportiva (GIBD), Departamento de Educación Física y Deportiva, Universitat de València, España. https://orcid.org/0000-0002-3008-3738
  • Esther García-Domínguez Grupo de Investigación FRESHAGE. Departamento de Fisiología. Facultad de Medicina, Universidad de Valencia y CIBERFES. Fundación Investigación Hospital Clínico Universitario/INCLIVA. Valencia, España. https://orcid.org/0000-0001-6276-4944
  • Inmaculada Aparicio Grupo de Investigación en Biomecánica Deportiva (GIBD), Departamento de Educación Física y Deportiva, Universitat de València, España
  • Núria Ortega-Benavent Grupo de Investigación en Biomecánica Deportiva (GIBD), Departamento de Educación Física y Deportiva, Universitat de València, España. https://orcid.org/0000-0001-5365-345X
  • Joaquín Martín Marzano-Felisatti https://orcid.org/0000-0002-2107-2025
  • Roberto Sanchis-Sanchis Grupo de Investigación en Biomecánica Deportiva (GIBD), Departamento de Educación Física y Deportiva, Universitat de València, España. https://orcid.org/0000-0003-3392-8764

DOI:

https://doi.org/10.47197/retos.v49.96764

Palabras clave:

zapatillas, marcha, biomecánica, acelerometría, termografía, (sport shoes), (gait), (biomechanics), (accelerometry), (thermography)

Resumen

Actualmente, están disponibles en el mercado nuevos modelos de calzado deportivo, como el calzado inestable. Sin embargo, todavía existe una falta de evidencia respecto a los cambios que este tipo de calzado puede producir en la biomecánica de la marcha. Así pues, el objetivo de esta investigación fue analizar los efectos agudos del calzado inestable sobre los impactos de aceleración, así como también sobre la variación de temperatura superficial plantar. Seis deportistas (estudiantes físicamente activos, edad 28±8 años, altura 1.73±0.05 m, masa corporal 68.7±6.7 kg, talla de pie 41±1.6 cm) participaron voluntariamente en el estudio. Las características de la pisada se obtuvieron mediante el test Foot Posture Index. La prueba de marcha se llevó a cabo sobre tapiz rodante (10 minutos a 1.44 m/s) bajo dos condiciones de calzado: zapatillas estables y zapatillas inestables. Se analizaron los impactos de aceleración (en tibia y cabeza), y la temperatura superficial plantar (en antepié, mediopié y retropié) en diferentes momentos de la prueba. Los resultados no mostraron diferencias significativas entre ambos tipos de zapatillas en las variables de acelerometría analizadas en ninguno de los momentos de registro. Sin embargo, sí se encontraron diferencias significativas entre ambos calzados (estable=1.40ºC, inestable=3.10ºC, p=0.004) en la variación de temperatura plantar del mediopié en ΔTPost5 (diferencia entre antes del inicio de la prueba y 5 minutos después de finalizarla). En conclusión, las zapatillas inestables parecen no producir ningún beneficio adicional al calzado tradicional para el deportista durante la marcha.

Palabras clave: zapatillas, marcha, biomecánica, acelerometría, termografía.

Abstract. Nowadays, new models of sports footwear are available on the market, such as unstable shoes. However, there is still a lack of evidence regarding the changes that this type of footwear can produce on gait biomechanics. Therefore, the aim of this research was to analyze the acute effects of unstable shoes on acceleration impacts, as well as on plantar surface temperature variation. Six athletes (physically active college students, age 28±8 years, height 1.73±0.05 m, body mass 68.7±6.7 kg, shoe size 41±1.6 cm) voluntarily participated in the study. Gait characteristics were obtained by means of the Foot Posture Index test. The walking test was performed on a treadmill (10 minutes at 1.44 m/s) under two footwear conditions: stable shoes and unstable shoes. Acceleration impacts (tibia and head), and plantar surface temperature (forefoot, midfoot and rearfoot) were analysed at different moments during the test. The results showed no significant differences between the two types of shoes in the accelerometry variables analyzed at any of the recording times. However, significant differences were found between both shoes (stable=1.40ºC, unstable=3.10ºC, p=0.004) in the variation of midfoot plantar temperature at ΔTPost5 (difference between before the start of the test and 5 minutes after the end of the test). In conclusion, unstable shoes do not seem to produce any additional benefit to traditional shoes for the athlete during walking.

Keywords: sport shoes, gait, biomechanics, accelerometry, thermography.

Citas

Buchecker, M., Pfusterschmied, J., Moser, S., & Müller, E. (2012). The effect of different Masai Barefoot Technology (MBT) shoe models on postural balance, lower limb muscle activity and instability assessment. Footwear Science, 4(2), 93–100. https://doi.org/10.1080/19424280.2012.674560

Charkoudian, N. (2003). Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo clinic proceedings, 78(5), 603-612. Elsevier. https://doi.org/10.4065/78.5.603

Cohen, J. (1992). Quantitative methods in psychology: A power primer. Psychol Bull 112, 1155-1159.

CSD. (2020). Encuesta de hábitos deportivos en España 2020. Subdirección General de Estadística y Estudios, Secretaría General Técnica. Ministerio de Educación, Cultura y Deporte.

Davis, J. K.; Laurent, C. M.; Allen, K. E., Zhang, Y.; Stolworthy, N. I.; Welch, T. R., & Nevett, M. E. (2017). Influence of Clothing on Thermoregulation and Comfort During Exercise in the Heat. Journal of Strength and Conditioning Research, 31(12), 3435-3443. https://doi.org/10.1519/JSC.0000000000001754

Demura, T.; Demura, S. I.; Yamaji, S.; Yamada, T., & Kitabayashi, T. (2012). Gait characteristics when walking with rounded soft sole shoes. The Foot, 22(1), 18-23. https://doi.org/10.1016/j.foot.2011.09.002

Encarnación-Martínez, A.; García-Gallart, A.; Gallardo, A. M.; Sánchez-Sáez, J. A., & Sánchez-Sánchez, J. (2018). Effects of structural components of artificial turf on the transmission of impacts in football players. Sports Biomechanics, 17(2), 251-260. https://doi.org/10.1080/14763141.2017.1285347

Evans, A. M.; Copper, A. W.; Scharfbillig, R. W.; Scutter, S. D., & Williams, M. T. (2003). Reliability of the Foot Pos-ture Index and Traditional Measures of Foot Position. Journal of the American Podiatric Medical Association, 93(3), 203-213. https://doi.org/10.7547/87507315-93-3-203

Farzadi, M.; Nemati, Z.; Jalali, M.; Doulagh, R. S., & Kamali, M. (2017). Effects of unstable footwear on gait characteris-tic: A systematic review. The Foot, 31, 72-76. https://doi.org/10.1016/j.foot.2017.04.005

Fernández-Cuevas, I. (2012). Effect of endurance, speed and strength training on skin temperature measured by infrared thermography. (Doctoral dissertation).

Fernández-Cuevas, I.; Arnáiz Lastras, J.; Escamilla Galindo, V., & Gómez Carmona, P. (2017). Infrared thermography for the detection of injury in sports medicine. Application of infrared thermography in sports science, 81-109. https://doi.org/10.1007/978-3-319-47410-6_10

García-Pérez, J. A.; Pérez-Soriano, P.; Llana Belloch, S.; Lucas-Cuevas, A. G., & Sánchez-Zuriaga, D. (2014). Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomechanics, 13(3), 259-266. https://doi.org/10.1080/14763141.2014.909527

Gil-Calvo, M.; Priego-Quesada, J. I.; Jimenez-Perez, I.; Lucas-Cuevas, A., & Pérez-Soriano, P. (2019). Effects of prefabri-cated and custom-made foot orthoses on skin temperature of the foot soles after running. Physiological Measure-ment, 40(5), 054004. https://doi.org/10.1088/1361-6579/ab1c8c

Gil Calvo, M.; Priego Quesada, J. I.; Lucas Cuevas, A. G.; Jiménez Pérez, I.; Aparicio Aparicio, I.; Giménez Gil, J. V.; Macián Romero, C.; Llana Belloch, S., & Pérez Soriano, P. (2015). Efectos de los soportes plantares sobre la termorre-gulación de las plantas de los pies durante la carrera. Biomecánica, 23, 7-16. https://doi.org/10.5821/sibb.23.1.5147

Hamill, J.; Knutzen, K. M. y Derrick, T. R. (2006). Biomechanical basis of human movement. Lippincott Williams & Wilkins.

Hildebrandt, C.; Raschner, C., & Ammer, K. (2010). An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors, 10(5), 4700-4715. https://doi.org/10.3390/s100504700

Inman, V. T.; Ralston, H. J., & Todd, F. (1981). Human walking. Williams & Wilkins.

Jimenez-Perez, I., Gil-Calvo, M., Priego-Quesada, J. I., Aparicio, I., Pérez-Soriano, P., & Ortiz de Anda, R. M. C. (2020). Effect of prefabricated thermoformable foot orthoses on plantar surface temperature after running: A gender comparison. Journal of Thermal Biology, 91, 102612. https://doi.org/10.1016/j.jtherbio.2020.102612

ISO (2008). 18434-1: 2008 Condition Monitoring and Diagnostics of Machines. Thermography Part 1: General Procedures. International Organization for Standardization: Geneva, Switzerland.

Jackman, R. W., & Kandarian, S. C. (2004). The molecular basis of skeletal muscle atrophy. American Journal of Physiolo-gy-Cell Physiology, 287(4), 834-C843. https://doi.org/10.1152/ajpcell.00579.2003

Khoury-Mireb, M.; Solomonow-Avnon, D.; Rozen, N., & Wolf, A. (2019). The effect of unstable shoe designs on the variability of gait measures. Gait & Posture, 69, 60-65. https://doi.org/10.1016/j.gaitpost.2019.01.017

Li, J. X., & Hong, Y. (2007). Kinematic and electromyographic analysis of the trunk and lower limbs during walking in negative-heeled shoes. Journal of the American Podiatric Medical Association, 97(6), 447-456. https://doi.org/10.7547/0970447

Lisón, J. F.; Pérez-Soriano, P.; Llana-Belloch, S.; Sanchez-Zuriaga, D., & Salvador-Coloma, P. (2016). Effects of unstable shoes on trunk muscle activity and lumbar spine kinematics. European Journal of Physical and Rehabilitation Medici-ne, 52(4), 440-6.

Lucas-Cuevas, A. G.; Encarnación-Martínez, A.; Camacho-García, A.; Llana-Belloch, S., & Pérez-Soriano, P. (2017). The location of the tibial accelerometer does influence impact acceleration parameters during running. Journal of Sports Scienc-es, 35(17), 1734-1738. https://doi.org/10.1080/02640414.2016.1235792

Martín-Nogueras, A. M..; Arenillas, J. I. C.; Rodríguez, J. O.; Iglesias, F. B., & Sánchez, C. S. (1999). Fases de la marcha humana. Revista iberoamericana de fisioterapia y kinesiología, 2(1), 44-49.

Merla, A.; Donato, L. D., & Romani, G. L. (2002). Infrared functional imaging: analysis of skin temperature during exer-cise. Engineering in Medicine and Biology, 2, 1141-1142. https://doi.org/10.1109/IEMBS.2002.1106316

Moreira, D. G.; Costello, J. T.; Brito, C. J.; Adamczyk, J. G.; Ammer, K.; Bach, A. J.; Costa, C. M.; Eglin, C.; Fer-nandes, A. A., & Fernández-Cuevas, I. (2017). Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. Journal of Thermal Biology, 69, 155-162. https://doi.org/10.1016/j.jtherbio.2017.07.006

Nigg, B.; Hintzen, S., & Ferber, R. (2006). Effect of an unstable shoe construction on lower extremity gait characteristics. Clinical Biomechanics, 21(1), 82-88. https://doi.org/10.1016/j.clinbiomech.2005.08.013

Pérez-Soriano, P. (2018). Metodología y aplicación práctica de la biomecánica deportiva. Paidotribo.

Pérez-Soriano, P.; Sanchis-Sanchis, R.; Lison Párraga, J. F.; Sánchez-Zuriaga, D.; Llana-Belloch, S. L.; Biviá-Roig, G.; & Salvador-Coloma, P. (2019). Impact attenuation during gait wearing unstable vs traditional shoes. European Journal of Human Movement, 42, 30-41.

Plas, F.; Blanc, Y., & Viel, E. (1996). La marcha humana: Cinesiología dinámica, biomecánica y patomecánica. Masson.

Price, C.; Smith, L.; Graham-Smith, P., & Jones, R. (2013). The effect of unstable sandals on instability in gait in healthy female subjects. Gait & Posture, 38(3), 410-415. https://doi.org/10.1016/j.gaitpost.2013.01.003

Sawa, R.; Doi, T.; Misu, S.; Tsutsumimoto, K.; Fujino, H., & Ono, R. (2013). Decreased skin temperature of the foot increases gait variability in healthy young adults. Gait & Posture, 38(3), 518-522. https://doi.org/10.1016/j.gaitpost.2013.01.019

Shimazaki, Y., & Murata, M. (2015). Effect of gait on formation of thermal environment inside footwear. Applied ergonom-ics, 49, 55-62. https://doi.org/10.1016/j.apergo.2015.01.007

Sperlich, B.; Born, D. P.; Lefter, M. D., & amp; Holmberg, H.-C. (2013). Exercising in a Hot Environment: Which T-shirt to Wear? Wilderness & Environmental Medicine, 24(3), 211-220. https://doi.org/10.1016/j.wem.2013.04.005

Stewart, L.; Gibson, J. N. A., & Thomson, C. E. (2007). In-shoe pressure distribution in “unstable” (MBT) shoes and flat-bottomed training shoes: a comparative study. Gait & posture, 25(4), 648-651. https://doi.org/10.1016/j.gaitpost.2006.06.012

Tan, J. M.; Auhl, M.; Menz, H. B.; Levinger, P., & Munteanu, S. E. (2016). The effect of Masai Barefoot Technology (MBT) footwear on lower limb biomechanics: A systematic review. Gait & Posture, 43, 76-86. https://doi.org/10.1016/j.gaitpost.2015.10.017

Whittle, M. W. (1997). Three-dimensional motion of the center of gravity of the body during walking. Human Movement Science, 16(2-3), 347-355. https://doi.org/10.1016/S0167-9457(96)00052-8

Willems, T. M.; De Ridder, R., & Roosen, P. (2012). The effect of a long-distance run on plantar pressure distribution during running. Gait & Posture, 35(3), 405-409. https://doi.org/10.1016/j.gaitpost.2011.10.362

Yavuz, M., Brem, R. W., Davis, B. L., Patel, J., Osbourne, A., Matassini, M. R., Wood, D. A., & Nwokolo, I. O. (2014). Temperature as a predictive tool for plantar triaxial loading. Journal of Biomechanics, 47(15), 3767–3770. https://doi.org/10.1016/j.jbiomech.2014.09.028

Descargas

Publicado

2023-06-28

Cómo citar

Catalá-Vilaplana, I., García-Domínguez, E. ., Aparicio, I., Ortega-Benavent, N. ., Marzano-Felisatti, J. M. ., & Sanchis-Sanchis, R. . (2023). Efecto del calzado deportivo inestable sobre los impactos de aceleración y la temperatura superficial plantar durante la marcha: un estudio piloto (Effect of unstable sports footwear on acceleration impacts and plantar surface temperature during walking: a pilot study). Retos, 49, 1004–1010. https://doi.org/10.47197/retos.v49.96764

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas