Las células troncales pluripotenciales en la terapia celular

Autores/as

  • J.A. Gámez Escalona
  • N. López Moratalla Universidad de Navarra

DOI:

https://doi.org/10.23938/ASSN.0362

Palabras clave:

Células troncales. Pluripotencialidad inducida (iPS). Modelos celulares de enfermedad. Reprogramación. Terapia celular.

Resumen

Las células con pluripotencialidad inducida (iPS) son un nuevo tipo de célula troncal derivada de células somáticas humanas, mediante reprogramación con factores de transcripción. Estas células iPS tienen características de las células troncales embrionarias, como la capacidad de convertirse en todos los tipos de células diferenciadas del organismo. A corto plazo, las células de pacientes reprogramadas están siendo útiles para crear modelos celulares de enfermedades, en las que estudiar los procesos patológicos y probar fármacos. A pesar de algunas críticas, se ha ido acumulando evidencia en los trabajos preclínicos, sobre la efectividad de la terapia celular con los clones de iPS apropiadamente seleccionados. La generación de células iPS ha propiciado el desarrollo de otras técnicas,como por ejemplo, la transdiferenciación por la que se convierte directamente in vivo fibroblastos cardiacos en miocitos. Este tipo celular pluripotencial es de un gran valor en la investigación biomedicina y abre nuevas posibilidades a la terapia celular.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

N. López Moratalla, Universidad de Navarra

Catedrática de Bioquímica y Biologia Molecular. Dpto Bioquímica y Genética. Universidad de Navarra

Citas

. YAMANAKA S. A Fresh Look at iPS Cells. Cell 2009; 137: 13-17.

https://doi.org/10.1016/j.cell.2009.03.034

. THOMSON A, ISKOVIT-ELDOR J, SHAPIRO S. S. Embryonic stem line derived from human blastocysts. Science 1998; 282:1145-1147.

https://doi.org/10.1126/science.282.5391.1145

. TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cells 2006; 126: 663-676.

https://doi.org/10.1016/j.cell.2006.07.024

. OKITA K, ICHISAKA T, YAMANAKA S. Generation of germ line-competent induced pluripotent stem cells. Nature 2007; 448: 313-317.

https://doi.org/10.1038/nature05934

. YU J, VODYANIK MA, SMUGA-OTTO K, ANTOSIEWICZ-BOURGET J, FRANE JL, TIAN S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917-1920.

https://doi.org/10.1126/science.1151526

. HANNA J, WERNIG M, MARKOULAKI S, SUN CW, MEISSNER A, CASSADY JP et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318: 1920-1923.

https://doi.org/10.1126/science.1152092

. KAJI K, NORRBY K, PACA A, MILEIKOVSKY, M, MOHSENI P, WOLTJEN K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors Nature 2009; 458: 771-775.

https://doi.org/10.1038/nature07864

. NAKAGAWA M, KOYANAGI M, TANABE K, TAKAHASHI K, ICHISAKA T, AOI T et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology 2008; 26:101-106.

https://doi.org/10.1038/nbt1374

. PERA MF. Low-risk reprogramming. Nature 2009; 458: 715-716.

https://doi.org/10.1038/458715a

. FUCHS E. The impact of cell culture on stem cell research. Cell Stem Cell 2012; 10: 640-641.

https://doi.org/10.1016/j.stem.2012.03.010

. PARK IH, ARORA N, HUO H, MAHERALI N, AHFELDT T, SHIMAMURA A et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877-886.

https://doi.org/10.1016/j.cell.2008.07.041

. EBERT AD, YU J, ROSE FF, MATTIS VB, LORSON CL, THOMSON JA. Induced pluripotent stem cells from a spinal muscular atrophypatient. Nature 2009; 457: 51-61.

https://doi.org/10.1038/nature07677

. YAMANAKA S. Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 2010; 7: 1-2.

https://doi.org/10.1016/j.stem.2010.06.009

. TAURA D, NOGUCHI M, SONE M, HOSODA K, MORI E, OKADA Y et al. Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells. FEBS Letters 2009; 583: 1029-1033.

https://doi.org/10.1016/j.febslet.2009.02.031

. ZHANG J, WILSON G, SOERENS A, KOONCE C, YU J, PALECEK S et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research 2009; 104: E30-E41.

https://doi.org/10.1161/CIRCRESAHA.108.192237

. ZHOU Q, BROWN J, KANAREK A, RAJAGOPAL J, MELTON DA. In vivo reprogramming of adult pancreatic exocrine cells to b-cells. Nature 2008; 455: 627-633.

https://doi.org/10.1038/nature07314

. VIERBUCHEN T, OTERMEIER A, PANG ZP, KOKUBO Y, SUDHOF TC, WERNIG M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035-1041.

https://doi.org/10.1038/nature08797

. HUANG P, HE Z, JI S, SUN H, XIANG D, LIU C et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011; 475: 386-389.

https://doi.org/10.1038/nature10116

. IEDA M, FU JD, DELGADO-OLGUIN P, VEDANTHAM V, HAYASHI Y, BRUNEAU B et al. Direct Reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142: 375-386.

https://doi.org/10.1016/j.cell.2010.07.002

. SZABO E, RAMPALLI S, RISUEÑO R, SCHNERCH A, MITCHELL R, FIEBIG-COMYN A et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468: 521-526.

https://doi.org/10.1038/nature09591

. YAMANATA S, BLAU HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010; 465: 704-712.

https://doi.org/10.1038/nature09229

. EGGAN K, TACKETT M, BALDWIN K, OSBORNE J, GOGOS J, CHESS A et al. Mice cloned from olfactory sensory neurons. Nature 2004, 428: 44-49.

https://doi.org/10.1038/nature02375

. TAKAHASHI K. Direct reprogramming. Dev Growth & Differ 2010; 52: 319-333.

https://doi.org/10.1111/j.1440-169X.2010.01169.x

. ZHANG XY, YAMANAKA S, KIM S, MIURA K, IWAO H. NAT1, a homologue of the eukaryotic translation initianion factor 4G, is essential for cell differentiation and mouse development. Jpn J Pharmacol 1999; 79: 163P.

https://doi.org/10.1016/S0021-5198(19)34666-9

. MIKKELSEN T S, HANNA J, ZHANG X, KU M, WERNIG M, SCHORDERET P et al. Dissecting direct reprogramming througt integrative genomic analysis. Nature 2008; 454: 49-54.

https://doi.org/10.1038/nature07056

. JUDSON R, BABIARZ J, VENERE M, BLELLOCH R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology 2009; 27:459-461.

https://doi.org/10.1038/nbt.1535

. GASPAR-MAIA A, ALAJEM A, POLESSO F, SRIDHARAN R, MASON M, HEIDERSBACH A et al. Chd1 regulates open chromatin andluripotency of embryonic stem cells. Nature 2009; 460: 863-U97.

https://doi.org/10.1038/nature08212

. WANG Y, ARMSTRONG S. Cancer: inappropriate expression of stem cell programs? Cell Stem Cell 2008; 2: 297-299.

https://doi.org/10.1016/j.stem.2008.03.014

. BLELLOCH R, VENERE M, YEN J, RHAMALO-SANTOS M. Generation of induced pluripotent stem cells in the absence of drug selection. cell stem Cell 2007; 1: 245-247.

https://doi.org/10.1016/j.stem.2007.08.008

. YAMANAKA S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 2009, 460: 49-50.

https://doi.org/10.1038/nature08180

. YAMANAKA S. Induced pluripotent stem cells: past, present and future. Cell Stem Cell 2012; 10: 678-684.

https://doi.org/10.1016/j.stem.2012.05.005

. MAHERALI N, HOCHEDLINGER K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 3: 595-605.

https://doi.org/10.1016/j.stem.2008.11.008

. CHIN M, MASON M, XIE W, VOLINIA S, SINGER M, PETERSON C et al. Induced pluripotent stem sells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5: 111-123.

https://doi.org/10.1016/j.stem.2009.06.008

. DOI A, PARK IH, WEN B, MURAKAMI P, ARYEE M, IRIZARRY R et al. Differential methylation of tissue and cancerspecific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics 2009; 41: 1350-1353.

https://doi.org/10.1038/ng.471

. GUENTHER M, FRAMPTON G, SOLDNER F, HOCKEMEYER D, MITALIPOVA M, JAENISCH R et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 2010; 7: 249-257.

https://doi.org/10.1016/j.stem.2010.06.015

. ITSKOVITZ-ELDOR J, SCHULDINER M, KARSENTI D, EDEN A, YUHUKA O, AMIT M et al. Differentiation of human embryonic stem cell into embryoid bodies comprising the three embryonic germ layers. Mol Med 2000; 6: 88-95.

https://doi.org/10.1007/BF03401776

. GHOSH Z, WILSON K, WU Y, HU S, QUERTERMOUS T, WU J. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS ONE 2010; 5: 1-10.

https://doi.org/10.1371/journal.pone.0008975

. BOULTING G, KISKINIS E, CROFT G, AMOROSO M, OAKLEY D, WAINGER B et al. A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 2011; 29: 279-283.

https://doi.org/10.1038/nbt.1783

. KISKINIS E, EGGAN K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 2010; 120: 51-59.

https://doi.org/10.1172/JCI40553

. HIRAMI Y, OSAKADA F, TAKAHASHI K, OKITA K, YAMANAKA S, IKEDA H et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neuroscience Letters 2009; 458: 126-131.

https://doi.org/10.1016/j.neulet.2009.04.035

. AIBA K, NEDEREZOV T, PIAO Y, NISHIYAMA A, MATOBA R, SHAROVA L et al. Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells. DNA Research 2009; 16: 73-80.

https://doi.org/10.1093/dnares/dsn035

. GORE A, LI Z, FUNG HL, YOUNG J, AGARWAL S, ANTOSIEWICZ-BOURGET J et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471: 61-67.

https://doi.org/10.1038/nature09805

. HUSSEIN S, BATADA N, VUORISTO S, CHING R, AUTIO R, NÄRVA E et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 471: 58-62.

https://doi.org/10.1038/nature09871

. ZHAO T, ZHANG ZN, RONG Z, XU Y. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474: 212-215.

https://doi.org/10.1038/nature10135

. QUINLAN A, BOLAND M, LEIBOWITZ M, SHUMILINA S, PEHRSON S, BALDWIN K et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent dna rearrangement during reprogramming. Cell Stem Cell 2011; 9: 366-373.

https://doi.org/10.1016/j.stem.2011.07.018

. OKANO H, NAKAMURA M, YOSHIDA K, OKADA Y, TSUJI O et al. Steps toward safe cell therapy using induced pluripotent stem. Cells Circ Res 2013; 112: 523-533.

https://doi.org/10.1161/CIRCRESAHA.111.256149

. POLITIS M, LINDVALL O. Clinical application of stem cell therapy in Parkinson's disease. BMC Medicine 2012; 10: 1-7.

https://doi.org/10.1186/1741-7015-10-1

. TAKAYAMA N, NISHIMURA S, NAKAMURA S, SHIMIZU T, OHNISHI R, ENDO H et al. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells. J Exp Med 2010; 207: 2817-2830.

https://doi.org/10.1084/jem.20100844

. NORI S, OKADA Y, YASUDA A, TSUJI O, TAKAHASHI Y, KOBAYASHI Y et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Nat Acad Sci 2011; 108: 16825-16830.

https://doi.org/10.1073/pnas.1108077108

. OKAMOTO S, TAKAHASHI M. Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophth Vis Sci 2011; 52: 8785-8790.

https://doi.org/10.1167/iovs.11-8129

. CYRANOSKI D. Stem cells cruise to clinic. Nature 2013; 494: 413.

https://doi.org/10.1038/494413a

. KOBAYASHI Y, OKADA Y, ITAKURA G, IWAI H, NISHIMURA S, YASUDA A et al. Pre-evaluated safe human ipsc-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS ONE 2012; 7: e52787.

https://doi.org/10.1371/journal.pone.0052787

. ISRAEL M, YUAN S, BARDY C, REYNA S, MU Y, HERRERA C et al. Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature 2012; 482: 216-220.

https://doi.org/10.1038/nature10821

. BRENNAND K, SIMONE A, JOU J, GELBOIN-BURKHART C, TRAN N, SANGAR S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221-225.

https://doi.org/10.1038/nature09915

. TANAKA T, TAKAHASHI K, YAMANE M, TOMIDA S, NAKAMURA S, OSHIMA K, et al. Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. BLOOD 2012; 120: 1299-1308.

https://doi.org/10.1182/blood-2012-03-417881

. SI-TAYEB K, DUCLOS-VALLEE JC, PETIT, MA. Hepatocyte-like cells differentiated from human induced pluripotent stem cells (iHLCs) are permissive to hepatitis C virus (HCV) infection: HCV study gets personal. J Hepat 2012; 57: 689-691.

https://doi.org/10.1016/j.jhep.2012.04.012

. RAYA Á, RODRÍGUEZ-PIZA I, GUENECHEA G, VASSENA R, NAVARRO S, BARRERO M et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460: 53-59.

https://doi.org/10.1038/nature08129

. HAYASHI Y, SAITOU M, YAMANAKA S. Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril 2012; 97: 1250-1259.

https://doi.org/10.1016/j.fertnstert.2012.04.037

. LÓPEZ-MORATALLA N. ¿Resucitan al inicio del 2009 las células troncales procedentes de embriones? Cuadernos de Bioética 2009; 70: 471-486.

. YOSHIDA Y, YAMANAKA S. An emerging strategy of gene therapy for cardiac Disease. Circ Res 2012; 111: 1108-1110.

https://doi.org/10.1161/CIRCRESAHA.112.278820

. LOSORDO DW, VALE PR, SYMES JF, DUNNINGTON CH, ESAKOF DD, MAYSKY M et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998; 98: 2800-2804.

https://doi.org/10.1161/01.CIR.98.25.2800

. ISNER JM, PIECZEK A, SCHAINFELD R, BLAIR R, HALEY L, ASAHARA T, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996; 348: 370-374

https://doi.org/10.1016/S0140-6736(96)03361-2

. JESSUP M, GREENBERG B, MANCINI D, CAPPOLA T, PAULY DF, JASKI B, YAROSHINKY A, ZSEBO KM, HAJJAR RJ. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304-313.

https://doi.org/10.1161/CIRCULATIONAHA.111.022889

. QIAN L, HUANG Y, SPENCER CI, FOLEY A, VEDANTHAM V, LIU L et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012; 485: 593-598.

https://doi.org/10.1038/nature11044

. INAGAWA K, MIYAMOTO K, YAMAKAWA H, MURAOKA N, SADAHIRO T, UMEI T et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res 2012; 111: 1147-1156.

https://doi.org/10.1161/CIRCRESAHA.112.271148

. CYRANOSKI D. Stem-cell pioneer banks on future therapies. Nature 2012; 488: 139.

https://doi.org/10.1038/488139a

Descargas

Publicado

30-04-2014

Cómo citar

1.
Gámez Escalona J, López Moratalla N. Las células troncales pluripotenciales en la terapia celular. An Sist Sanit Navar [Internet]. 30 de abril de 2014 [citado 5 de diciembre de 2025];37(1):129-36. Disponible en: https://recyt.fecyt.es/index.php/ASSN/article/view/22890

Número

Sección

Revisiones

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.