Os efeitos de 6 semanas de treinamento combinado de baixo volume na potência muscular, força muscular e potência aeróbica em jovens adultos ativos

Autores

DOI:

https://doi.org/10.47197/retos.v50.99698

Palavras-chave:

exercício, Treino concorrente, Aptidão física, Rendimento, Capacidade cardiorrespiratória, Destreinado

Resumo

Os efeitos do treinamento combinado (EC) no desempenho atlético estão bem estabelecidos, assim como o potencial do exercício de baixo volume na aptidão física. No entanto, a eficácia da TC de baixo volume nas medidas de aptidão física requer investigação mais aprofundada. Portanto, o objetivo deste estudo foi analisar os efeitos da TC de baixo volume de 6 semanas sobre a potência muscular, força muscular e potência aeróbica máxima (Wmáx). Dezoito homens adultos jovens saudáveis ​​e ativos (média ± DP, 20,06 ± 1,66 anos; 22,23 ± 2,76 kg/m2) foram submetidos a CE de baixo volume (GE, n=9) ou mantiveram vida normal (GC, n=9). O CE foi composto por treinamento de força (FE), 2 séries de 3 exercícios com 80 a 85% 1RM) seguido de treinamento intervalado de alta intensidade (HIIT), 5 séries de 60'' com 95% Wmáx). Medidas de altura do salto, 1 repetição máxima (1RM) no supino reto e agachamento, Wmáx e carga interna foram obtidas antes e após o treinamento para análise. Além disso, foi utilizado teste ANOVA de medidas repetidas e amostras pareadas com p ≤ 0,05. Os principais resultados demonstraram que o TC de baixo volume aumentou a altura do salto (p ≤ 0,05), supino e agachamento 1RM (p < 0,001 e p < 0,001, respectivamente) e Wmáx (p ≤ 0,01). a carga não teve diferenças significativas entre as semanas (p > 0,05). Para adultos jovens ativos, a TC de baixo volume é uma estratégia eficaz e eficiente em termos de tempo para melhorar a altura do salto, 1RM no supino e agachamento e Wmáx sem aumentar a carga interna.

Palavras-chave: Exercício, Treinamento concorrente, Aptidão física, Desempenho, Aptidão cardiorrespiratória, Não treinado.

Referências

American College of Sports Medicine. (2009). Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687–708. https://doi.org/10.1249/MSS.0B013E3181915670

Ashton, L. M., Hutchesson, M. J., Rollo, M. E., Morgan, P. J., & Collins, C. E. (2017). Motivators and Barriers to Engag-ing in Healthy Eating and Physical Activity. American Journal of Men’s Health, 11(2), 330–343. https://doi.org/10.1177/1557988316680936

Baechle, T., & Earle, R. (2011). Learning how to manipulate training variables to maximize results. In Weight Training: Steps to Success (4th ed., pp. 177–188). Human Kinetics, Inc.

Balabinis, C. P., Psarakis, C. H., Moukas, M., Vassiliou, M. P., & Behrakis, P. K. (2003). Early phase changes by concur-rent endurance and strength training. Journal of Strength and Conditioning Research, 17(2), 393–401. https://doi.org/10.1519/1533-4287(2003)017<0393:epcbce>2.0.co;2

Bell, G. J., Syrotuik, D., Martin, T. P., Burnham, R., & Quinney, H. A. (2000). Effect of concurrent strength and endur-ance training on skeletal muscle properties and hormone concentrations in humans. European Journal of Applied Physiology 2000 81:5, 81(5), 418–427. https://doi.org/10.1007/S004210050063

Beltrame, T., Gois, M. O., Hoffmann, U., Koschate, J., Richard, X., Hughson, L., Cecília, M., Frade, M., Linares, S. N., Da, R., Torres, S., & Catai, A. M. (2020). Relationship between maximal aerobic power with aerobic fitness as a func-tion of signal-to-noise ratio. Journal of Applied Physiology, 129(3), 522–532. https://doi.org/10.1152/JAPPLPHYSIOL.00310.2020

Beltz, N. M., Gibson, A. L., Janot, J. M., Kravitz, L., Mermier, C. M., & Dalleck, L. C. (2016). Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. Journal of Sports Medicine, 2016, 1–12. https://doi.org/10.1155/2016/3968393

Chtara, M., Chamari, K., Chaouachi, M., Chaouachi, A., Koubaa, D., Feki, Y., Millet, G. P., & Amri, M. (2005). Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. British Journal of Sports Medicine, 39(8), 555–560. https://doi.org/10.1136/BJSM.2004.015248

Chtara, M., Chaouachi, A., Levin, G. T., Chaouachi, M., Chamari, K., Amri, M., & Laursen, P. B. (2008). Effect of con-current endurance and circuit resistance training sequence on muscular strength and power development. Journal of Strength and Conditioning Research, 22(4), 1037–1045. https://doi.org/10.1519/JSC.0B013E31816A4419

Day, M. L., McGuigan, M. R., Brice, G., & Foster, C. (2004). Monitoring exercise intensity during resistance training using the session RPE scale. Journal of Strength and Conditioning Research, 18(2), 353–358. https://doi.org/10.1519/R-13113.1

del Vecchio, A., Negro, F., Holobar, A., Casolo, A., Folland, J. P., Felici, F., & Farina, D. (2019). You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force de-velopment in humans. The Journal of Physiology, 597(9), 2445–2456. https://doi.org/10.1113/JP277396

Doma, K., Deakin, G. B., Schumann, M., & Bentley, D. J. (2019). Training Considerations for Optimising Endurance Development: An Alternate Concurrent Training Perspective. Sports Medicine (Auckland, N.Z.), 49(5), 669–682. https://doi.org/10.1007/S40279-019-01072-2

Eddens, L., van Someren, K., & Howatson, G. (2018). The Role of Intra-Session Exercise Sequence in the Interference Effect: A Systematic Review with Meta-Analysis. Sports Medicine, 48(1), 177–188. https://doi.org/10.1007/S40279-017-0784-1

Fyfe, J. J., Bartlett, J. D., Hanson, E. D., Stepto, N. K., & Bishop, D. J. (2016). Endurance training intensity does not me-diate interference to maximal lower-body strength gain during short-term concurrent training. Frontiers in Physiology, 7(NOV), 487. https://doi.org/10.3389/FPHYS.2016.00487/FULL

Fyfe, J. J., Bishop, D. J., & Stepto, N. K. (2014). Interference between concurrent resistance and endurance exercise: Mo-lecular bases and the role of individual training variables. Sports Medicine, 44(6), 743–762. https://doi.org/10.1007/S40279-014-0162-1/FIGURES/2

Fyfe, J. J., Hamilton, D. L., & Daly, R. M. (2021). Minimal-Dose Resistance Training for Improving Muscle Mass, Strength, and Function: A Narrative Review of Current Evidence and Practical Considerations. Sports Medicine, 52(3), 1–17. https://doi.org/10.1007/S40279-021-01605-8/FIGURES/3

Galvim, A. L., Oliveira, I. M., Martins, T. V., Vieira, L. M., Cerri, N. C., de Castro Cezar, N. O., Pedroso, R. V., & de Oliveira Gomes, G. A. (2019). Adherence, Adhesion, and Dropout Reasons of a Physical Activity Program in a High Social Vulnerability Context. Journal of Physical Activity and Health, 16(2), 149–156. https://doi.org/10.1123/JPAH.2017-0606

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., & Swain, D. P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuro-motor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0B013E318213FEFB

García-Pallars, J., & Izquierdo, M. (2011). Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Medicine, 41(4), 329–343. https://doi.org/10.2165/11539690-000000000-00000/FIGURES/6

Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. Journal of Strength and Conditioning Re-search, 25(2), 556–560. https://doi.org/10.1519/JSC.0B013E3181CCB18D

González-Badillo, J. J., & Serna, J. (2020). FUERZA, VELOCIDAD Y RENDIMIENTO FÍSICO Y DEPORTIVO (2nd ed.). ESM.

Gross, M., & Lüthy, F. (2020). Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchange-able? Sports (Basel, Switzerland), 8(5). https://doi.org/10.3390/SPORTS8050060

Guillen Pereira, L., Rodriguez Torres, A. F., Capote Lavandero, G., Rendón Morales, P. A., Lagla Melendres, M. E., & Rosas Mora, M. E. (2020). Evaluación de la factibilidad de un sistema de entrenamiento combinado en el desarrollo de fuerza explosiva de los miembros inferiores de los taekwondocas (Assessment of the feasibility of a combined training system in the development of explosive strength of the lower limbs of taekwondocas). Retos, 39, 411–420. https://doi.org/10.47197/retos.v0i39.80748

Häkkinen, K., Alen, M., Kraemer, W. J., Gorostiaga, E., Izquierdo, M., Rusko, H., Mikkola, J., Häkkinen, A., Valkeinen, H., Kaarakainen, E., Romu, S., Erola, V., Ahtiainen, J., & Paavolainen, L. (2003). Neuromuscular adaptations during concurrent strength and endurance training versus strength training. European Journal of Applied Physiology, 89(1), 42–52. https://doi.org/10.1007/S00421-002-0751-9/FIGURES/7

Hickson, R. C. (1980). Interference of strength development by simultaneously training for strength and endurance. Europe-an Journal of Applied Physiology and Occupational Physiology 1980 45:2, 45(2), 255–263. https://doi.org/10.1007/BF00421333

Hill, A. v., & Lupton, H. (1923). Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen. An International Journal of Medicine, 16(62), 135–171. https://doi.org/10.1093/QJMED/OS-16.62.135

Hunter, G., Demment, R., & Miller, D. (1987). Development of strength and maximum oxygen uptake during simultane-ous training for strength and endurance. The Journal of Sports Medicine and Physical Fitness, 27(3), 269–275. https://europepmc.org/article/med/3431108

Jones, C., Griffiths, P., & Mellalieu, S. (2016). Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies. Sports Medicine, 47(5), 943–974. https://doi.org/10.1007/S40279-016-0619-5

Kirk, E. P., Washburn, R. A., Bailey, B. W., LeCheminant, J. D., & Donnelly, J. E. (2007). Six months of supervised high-intensity low-volume resistance training improves strength independent of changes in muscle mass in young overweight men. Journal of Strength and Conditioning Research, 21(1), 151–156. https://doi.org/10.1519/00124278-200702000-00027

Kraemer, W. J., Patton, J. F., Gordon, S. E., Harman, E. A., Deschenes, M. R., Reynolds, K., Newton, R. U., Triplett, N. T., & Dziados, J. E. (1995). Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. Journal of Applied Physiology (Bethesda, Md. : 1985), 78(3), 976–989. https://doi.org/10.1152/JAPPL.1995.78.3.976

Lee, M. J. C., Ballantyne, J. K., Chagolla, J., Hopkins, W. G., Fyfe, J. J., Phillips, S. M., Bishop, D. J., & Bartlett, J. D. (2020). Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS ONE, 15(5). https://doi.org/10.1371/JOURNAL.PONE.0233134

Markov, A., Chaabene, H., Hauser, L., Behm, S., Bloch, W., Puta, C., & Granacher, U. (2022). Acute Effects of Aerobic Exercise on Muscle Strength and Power in Trained Male Individuals: A Systematic Review with Meta-analysis. In Sports Medicine (Vol. 52, Issue 6, pp. 1385–1398). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40279-021-01615-6

Marques, D. L., Neiva, H. P., Marinho, D. A., & Marques, M. C. (2023). Manipulating the Resistance Training Volume in Middle-Aged and Older Adults: A Systematic Review with Meta-Analysis of the Effects on Muscle Strength and Size, Muscle Quality, and Functional Capacity. Sports Medicine, 53(2), 503–518. https://doi.org/10.1007/s40279-022-01769-x

Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2020). Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS ONE, 15(6). https://doi.org/10.1371/JOURNAL.PONE.0232465

Martínez-Cava, A., Morán-Navarro, R., Sánchez-Medina, L., González-Badillo, J. J., & Pallarés, J. G. (2019). Velocity- and power-load relationships in the half, parallel and full back squat. Journal of Sports Sciences, 37(10), 1088–1096. https://doi.org/10.1080/02640414.2018.1544187

Martins, R., & Loureiro, N. (2023). The effects of low-volume combined training on health-related physical fitness out-comes in active young adults: A controlled clinical trial. Sports Medicine and Health Science. https://doi.org/10.1016/J.SMHS.2022.12.004

McCarthy, J. P., Agre, J. C., Graf, B. K., Pozniak, M. A., & Vailas, A. C. (1995). Compatibility of adaptive responses with combining strength and endurance training. Medicine & Science in Sports & Exercise, 27(3), 429–436. https://doi.org/10.1249/00005768-199503000-00021

McLaren, S. J., Macpherson, T. W., Coutts, A. J., Hurst, C., Spears, I. R., & Weston, M. (2018). The Relationships Be-tween Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis. Sports Medicine, 48(3), 641–658. https://doi.org/10.1007/S40279-017-0830-Z

Methenitis, S. (2018). A Brief Review on Concurrent Training: From Laboratory to the Field. Sports, 6(4), 127. https://doi.org/10.3390/SPORTS6040127

Murlasits, Z., Kneffel, Z., & Thalib, L. (2017). The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis. Journal of Sports Sciences, 36(11), 1212–1219. https://doi.org/10.1080/02640414.2017.1364405

Nugent, F. J., Comyns, T. M., Burrows, E., & Warrington, G. D. (2017). Effects of Low-Volume, High-Intensity Training on Performance in Competitive Swimmers: A Systematic Review. Journal of Strength and Conditioning Research, 31(3), 837–847. https://doi.org/10.1519/JSC.0000000000001583

Pallarés, J. G., Sánchez-Medina, L., Pérez, C. E., de La Cruz-Sánchez, E., & Mora-Rodriguez, R. (2014). Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. Journal of Sports Sciences, 32(12), 1165–1175. https://doi.org/10.1080/02640414.2014.889844

Pearcey, G. E. P., Alizedah, S., Power, K. E., & Button, D. C. (2021). Chronic resistance training: is it time to rethink the time course of neural contributions to strength gain? European Journal of Applied Physiology, 121(9), 2413–2422. https://doi.org/10.1007/S00421-021-04730-4/FIGURES/2

Peterson, M. D., Pistilli, E., Haff, G. G., Hoffman, E. P., & Gordon, P. M. (2011). Progression of volume load and muscu-lar adaptation during resistance exercise. European Journal of Applied Physiology, 111(6), 1063–1071. https://doi.org/10.1007/S00421-010-1735-9

Ribeiro, B., Pereira, A., Neves, P. P., Sousa, A. C., Ferraz, R., Marques, M. C., Marinho, D. A., & Neiva, H. P. (2020). The Role of Specific Warm-up during Bench Press and Squat Exercises: A Novel Approach. International Journal of Envi-ronmental Research and Public Health, 17(18), 1–15. https://doi.org/10.3390/IJERPH17186882

Schumann, M., Feuerbacher, J. F., Sünkeler, M., Freitag, N., Rønnestad, B. R., Doma, K., & Lundberg, T. R. (2021). Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An Updated System-atic Review and Meta-Analysis. Sports Medicine, 52(3), 601–612. https://doi.org/10.1007/S40279-021-01587-7

Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training Monitoring for Resistance Exercise: Theory and Applications. Sports Med, 46(5), 687–698. https://doi.org/10.1007/s40279-015-0454-0

Shamim, B., Devlin, B. L., Timmins, R. G., Tofari, P., Lee Dow, C., Coffey, V. G., Hawley, J. A., & Camera, D. M. (2018). Adaptations to Concurrent Training in Combination with High Protein Availability: A Comparative Trial in Healthy, Recreationally Active Men. Sports Medicine (Auckland, N.z.), 48(12), 2869. https://doi.org/10.1007/S40279-018-0999-9

Silva, R. F., Cadore, E. L., Kothe, G., Guedes, M., Alberton, C. L., Pinto, S. S., Pinto, R. S., Trindade, G., & Kruel, L. F. M. (2012). Concurrent training with different aerobic exercises. International Journal of Sports Medicine, 33(8), 627–634. https://doi.org/10.1055/S-0031-1299698

Storer, T. W., Davis, J. A., & Caiozzo, V. J. (1990). Accurate prediction of VO2max in cycle ergometry. Medicine and Science in Sports and Exercise, 22(5), 704–712. https://doi.org/10.1249/00005768-199010000-00024

Sultana, R. N., Sabag, A., Keating, S. E., & Johnson, N. A. (2019). The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Medicine, 49(11), 1687–1721. https://doi.org/10.1007/S40279-019-01167-W

Tsitkanou, S., Spengos, K., Stasinaki, A. N., Zaras, N., Bogdanis, G., Papadimas, G., & Terzis, G. (2017). Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scandinavian Journal of Medicine & Science in Sports, 27(11), 1317–1327. https://doi.org/10.1111/SMS.12751

Winett, R. A., Wojcik, J. R., Fox, L. D., Herbert, W. G., Blevins, J. S., & Carpinelli, R. N. (2003). Effects of low volume resistance and cardiovascular training on strength and aerobic capacity in unfit men and women: A demonstration of a threshold model. Journal of Behavioral Medicine, 26(3), 183–195. https://doi.org/10.1023/A:1023410302898

Wong, P. L., Chaouachi, A., Chamari, K., Dellal, A., & Wisloff, U. (2010). Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. Journal of Strength and Conditioning Research, 24(3), 653–660. https://doi.org/10.1519/JSC.0B013E3181AA36A2

Downloads

Publicado

2023-09-15

Como Citar

Martins, R., & Loureiro , N. . (2023). Os efeitos de 6 semanas de treinamento combinado de baixo volume na potência muscular, força muscular e potência aeróbica em jovens adultos ativos. Retos, 50, 478–486. https://doi.org/10.47197/retos.v50.99698

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)