Variáveis cinéticas e rigidez vertical de patinadores andaluzes
DOI:
https://doi.org/10.47197/retos.v0i39.78612Palavras-chave:
rigidez vertical, patinação artística, altura de vôo, força, potênciaResumo
El patinaje artístico es una disciplina deportiva con varias modalidades y, en casi todas ellas, los elementos de mayor dificultad suelen ser los saltos, que deben ser altos para permitir varias rotaciones. El objetivo del presente estudio fue el de analizar las variables cinéticas y el stiffness vertical de un grupo de ocho patinadoras de artístico andaluzas de nivel regional de edades comprendidas entre 14 y 18 años, comparándolas con un grupo de ocho chicas sedentarias del mismo rango de edad. Se analizaron la altura de vuelo y las siguientes variables de la batida de un salto vertical con contramovimiento (CMJ): máximo descenso del centro de masas, pico de fuerzas, fuerza media, impulso de aceleración, duración del impulso de aceleración, potencia media, potencia pico, stiffness vertical, stiffness vertical normalizado a la masa corporal y velocidad máxima de descenso. Los resultados mostraron que las patinadoras tenían alturas de vuelo significativamente mayores que las sedentarias y presentaban valores de potencia y de impulso de aceleración significativamente mayores, lo que indica que eran más explosivas. Sin embargo, no realizaron una mayor fuerza media durante la fase concéntrica de la batida. Son necesarios nuevos trabajos que comparen a las patinadoras con otros grupos de deportistas, analizando especialmente variables poco estudiadas como el stiffness vertical y la máxima velocidad de descenso, para valorar si las patinadoras realizan una buena utilización del ciclo estiramiento-acortamiento y cómo aumentar la fuerza media durante la fase concéntrica de la batida.
Abstract. Figure skating is a sport with different modalities. In most of them, jumps are usually the most difficult elements and need to be high enough so to complete several rotations. The aim of the present study was to analyse the kinetic variables and the vertical stiffness of eight andalusian female figure skaters aged 14-18 years old, comparing them to a group of eight sedentary female subjects of the same age. Flight height and the following kinetic variables during a countermovement jump (CMJ) were analyzed: maximal displacement of the centre of mass, peak force, average force, acceleration impulse, length of the acceleration impulse, average power, peak power, vertical stiffness, vertical stiffness normalized to body mass and maximum downward velocity during the eccentric phase. Results showed that figure skaters had flight heights greater than sedentary subjects and they also exhibited greater values of power and acceleration impulse, which means that they have higher explosive strength. However, average force developed during the concentric phase was not significantly higher in figure skaters. Further research comparing figure skaters with other athletes is needed, with special focus on the analysis of vertical stiffness and maximum downward velocity, so to clarify whether figure skaters make a good use of the stretch-shortening cycle; also to understand how to develop higher average force during the concentric phase of jumps.
Referências
Abián, J., Alegre, L. M., Lara, A. J., & Aguado, X. (2006). Diferencias de sexo durante la amortiguación de caídas en test de salto. Archivos de Medicina del Deporte, 23(116), 441-449.
Aura, O., & Viitasalo, J.T. (1989). Biomechanical characteristics of jumping. International Journal of Sports Biomechanics, 5, 89-98. https://doi.org/10.1123/ijsb.5.1.98
Bosco, C. (1999) Strength assessment with the Bosco’s test (pp. 68). Rome: Italian Society of Sport Science.
Bosco, C. (2000). La fuerza muscular. Aspectos metodológicos. Barcelona: Inde Publicaciones.
Brown, A.C., Wells, T.J., Schade, M.L., Smith, D.L., & Fehling, P.C. (2007). Effects of plyometric training versus traditional weight training on strength, power and aesthetic jumping ability in female collegiate dancers. Journal of Dance Medicine and Science, 11(2), 38-44.
Brughelli, M., & Cronin, J. (2008). A review of research on the mechanical stiffness in running and jumping: methodology and implications. Scandinavian Journal of Medicine and Science in Sports, 18, 417-426. https://doi.org/10.1111/j.1600-0838.2008.00769.x
Butler, R.J., Crowell, H.P., & Davis, I.M. (2003). Lower extremity stiffness: implications performance and injury. Clinical Biomechanics, 18, 511-517. https://doi.org/10.1016/s0268-0033(03)00071-8
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Second edition. Hillsdate, NJ: LEA.
Dias, P., Mello, A., Veiga, G., Kanitz, A.C., Lusa, E., Santana, S., …, & Martins, L.F. (2014). Neuromuscular responses of elite skaters during different roller figure skating jumps. Journal of Human Kinetics, 41, 23-32. https://doi.org/10.2478/hukin-2014-0029
Dowling, J.J., & Vamos, L. (1993). Identification of kinetic and temporal factors related to vertical jump perfomance. Journal of Applied Biomechanics, 9, 95-110. https://doi.org/10.1123/jab.9.2.95
Goodwin, J.S., Blackburn, J.T., Schwartz, T.A., & Williams, D.S.B. (2019). Clinical predictors of dynamic lower extremity stiffness during running. Journal of Orthopaedic Sports & Physical Therapy, 49(2): 98-104. https://doi.org/10.2519/jospt.2019.7683
González-Badillo, J.J., & Marques, M.C. (2009). Relationship between kinematic factors and countermovement jump height in trained track and field athletes. Journal of Strength and Conditioning Research, 24(12), 3443–3447. https://doi.org/10.1519/JSC.0b013e3181bac37d
González, J.J., & Ribas, J. (2002) Programación del entrenamiento de fuerza. Barcelona: INDE Publicaciones.
Harman, E.A., Rosenstein, M.T., Frykman, P.N., & Rosenstein, R.M. (1990). The effects of arms and countermovement on vertical jumping. Medicine & Science in Sports & Exercise, 22, 825-833. https://doi.org/10.1249/00005768-199012000-00015
Hellín, M., García, J.V., & García, J.J. (2020). Fuerza explosiva de tren inferior en karatekas juveniles de élite. Influencia del género y horas de entrenamiento. Retos, 38, 667-670.
Hori, N., Newton, R.U., Kawamori, N., McGuigan, M.R., Kraemer, W.J., & Nosaka, K. (2009). Reliability of Performance Measurements derived from Ground Reaction Force data during Countermovement Jump and the influence of Sampling Frequency. Journal of Strength and Conditioning Research, 23(3), 874-882. https://doi.org/10.1519/JSC.0b013e3181a00ca2
Innocenti, B., Facchielli, D., Torti, S., & Verza, A. (2006). Analysis of biomechanical quantities during a squat jump: evaluation of a perfomance index. Journal of Strength & Conditioning Research, 20(3), 709-715. https://doi.org/10.1519/R-17815.1
Ionescu, A., Gugu-Gramatopol, C. (2014). Increasing the performance in figure skating-junior through spatial awareness improvement. Gimnasium, 2(XV), 279-290.
Kalkhoven, J.T., & Watsford, M.L. (2018). The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. Journal of Sports Sciences, 36(9), 1022-1029. https://doi.org/10.1080/02640414.2017.1349921
King, D.L. (2005). Performing triple and quadruple figure skating jumps: Implications for training. Canadian Journal of Applied Physiology, 30(6), 743-753. https://doi.org/10.1139/h05-153
Kirby, T.J., McBride, J.M., Haines, T.L., Dayne, A.M. (2011). Relative net vertical impulse determines jumping Performance. Journal of Applied Biomechanics, 27, 207-214. https://doi.org/10.1123/jab.27.3.207
Kuitunen, S., Ogiso, K., & Komi, P.V. (2011). Leg and joint stiffness in human hopping. Scandinavian Journal of Medicine and Science in Sports, 21, e159–e167.https://doi.org/10.1111/j.1600-0838.2010.01202.x
Laffaye, G., Bardy, B.G., & Durey, A. (2005). Leg stiffness and expertise in men jumping. Medicine & Science in Sports & Exercise, 37(4), 536-543.https://doi.org/10.1249/01.mss.0000158991.17211.13
Laffaye, G., & Wagner, P. (2013). Eccentric rate of force development determines jumping performance. Computer Methods in Biomechanics and Biomedical Engineering, 16(S1), 1-2. http://dx.doi.org/10.1080/10255842.2013.815839
Linthorne, N.P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69(11), 1198-1204. https://doi.org/10.1119/1.1397460
Maloney, S.J., Richards, J., Nixon, D.G.D., Harvey, L.J., Fletcher, I.M. (2016). Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries. Scandinavian Journal of Medicine and Science in Sports, 27, 661–669.https://doi.org/10.1111/sms.12682
Mazurkiewicz, A., Iwanska, D., & Urbanik, C. (2018). Biomechanics of the axel Paulsen figure skating jump. Polish Journal of Sport and Tourism, 25, 3-9. https://doi.org/10.2478/pjst-2018-0007
McMahon, T.A., & Cheng, G.C. (1990). The mechanics of running: How does stiffness couple with speed? Journal of Biomechanics, 23(1), 65-78.https://doi.org/10.1016/0021-9290(90)90042-2
McNitt-Gray, J. (1991). Kinematics and impulse characteristics of drop landings from three heights. International Journal of Sports Biomechanics, 7, 201-223. https://doi.org/10.1123/ijsb.7.2.201
Milić, V., Nejić, D., & Kostić, R. (2008). The effect of plyometric training on the explosive strength of leg muscles of volleyball players on single foot and two-foot takeoff jumps. Physical Education and Sport, 6(2), 169-179. https://doi.org/10.4100/jhse.2012.7.Proc1.05
Newton, R.U., Rogers, R.A., Volek, J.S., Häkkinen, K., & Kraemer, W.J. (2006). Four weeks of optimal load ballistic resistance training at the end of season attenuates declining jump performance of women volleyball players. Journal of Strength and Conditioning Research, 20(4), 955-961. https://doi.org/10.1519/R-5050502x.1
Pickering, E.C., Watsford, M.L., Bower, R.G., & Murphy, A.J. (2017). The relationship between lower body stiffness and injury incidence in female netballers. Sports Biomechanics, 16(3), 361–373. https://doi.org/10.1080/14763141.2017.1319970
Podolski, A., Kaufman, K.R., Cahalan, T.D., Aleshinsky, S.Y., & Chao, E.Y.S. (1990). The relationship of strength and jump height in figure skaters. The American Journal of Sports Medicine, 18(4), 400-405. https://doi.org/10.1177/036354659001800412
Poe, C.M. (1996). Plyometrics: beneficial for all disciplines of skating, singles, pairs and ice dance. The Professional Skater Magazine, July-August, 37-38.
Reiser, R.F., Rocheford, E.C., & Armstrong, C.J. (2006). Building a better understanding of basic mechanical principles through analysis of the vertical jump. Strength & Conditioning Journal, 28(4), 70-80. https://doi.org/10.1519/00126548-200608000-00012
Rodríguez-Berzal, E., Ara, I., Mata, E., & Aguado, X. (2011). Capacidad de salto y equilibrio en jóvenes y ancianos físicamente activos. Apunts. Medicina de l’Esport, 47(175), 83-89. https://doi.org/10.1016/j.apunts.2011.12.001
Sáez de Villareal, E., Kellis, E., Kraemer, W.J., & Izquierdo, M. (2009). Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. Journal of Strength and Conditioning Research, 23(2), 495-506. https://doi.org/10.1519/JSC.0b013e318196b7c6
Sánchez-Moreno, M., García-Asencio, C., González-Badillo, J.J., & Díaz-Cueli, D. (2018). Strength and vertical jump performance changes in elite male volleyball players during the season. Retos, 34, 291-294.
Sánchez-Sixto, A., Harrison, A.J., & Floría, P. (2018). Larger countermovement increases the jump height of countermovement jump. Sports, 6, 131. https://doi.org/10.3390/sports6040131
Sánchez-Sixto, A., López-Álvarez, J., & Floría, P. (2018). Efecto de modificar la profundidad y velocidad del contramovimiento durante el salto vertical. Retos, 34, 287-290.
San Román-Quintana, J., Calleja-González, J., Casamichana, D., & Castellano, J. (2011). Entrenamiento de la capacidad de salto en el jugador de baloncesto: una revisión. Cultura, Ciencia y Deporte, 6, 55-64. http://dx.doi.org/10.12800/ccd.v6i16.32
Saunders, P., Telford, R.D., Pyne, D.B., Peltola, E.M., Cunningham, R.B., Gore, C.J., & Hawley, J.A. (2006). Short-Term plyometric training improves running economy in highly trained middle and long distance runners. Journal of Strength and Conditioning Research, 20(4), 947-954. https://doi.org/10.1519/R-18235.1
Serpell, B.G., Ball, N.B., Scarvell, J.M., & Smith, P.N. (2012). A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. Journal of Sports Sciences, 30(13): 1347-1363. https://doi.org/10.1080/02640414.2012.710755
Serpell, B.G., Scarvell, J.M., Ball, N.B., & Smith, P.N. (2014). Vertical stiffness and muscle strain in professional Australian football. Journal of Sports Sciences, 32(20), 1924-930. https://doi.org/10.1080/02640414.2014.942681
Seyfarth, A., Geyer, H., Günther, M., & Blickhan, R. (2002). A movement criterion for running. Journal of Biomechanics, 35, 649-655. https://doi.org/10.1016/s0021-9290(01)00245-7
Singh, B., Kumar, A., & Ranga, M.D. (2017). Biomechanical analysis of explosive strength of legs of athletes. Journal of Exercise Science & Physiotherapy, 13(1), 53-61. https://doi.org/10.18376/jesp/2017/v13/i1/111271
Tomioka, M., Owings, T.M., & Grabiner, M.D. (2001). Lower extremity strength and coordination are independent contributors to maximum vertical jump height. Journal of Applied Biomechanics, 17, 181-187. https://doi.org/10.1123/jab.17.3.181
Waxman, J.P., Ford, K.R., Nguyen, A., & Taylor, J.B. (2018). Female athletes with varying levels of vertical stiffness display kinematic and kinetic differences during single-leg hopping. Journal of Applied Biomechanics, 34, 65-75. https://doi.org/10.1123/jab.2017-0144
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess