Associação entre a composição corporal total e segmentar e o desempenho anaeróbio em atletas de Crossfit®: diferenças entre sexos e previsão de desempenho

Autores

  • Tomás Ponce-García Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga https://orcid.org/0000-0003-1798-2189
  • Jerónimo García-Romero Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga
  • Laura Carrasco-Fernández 1 Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga, Spain
  • Alejandro Castillo-Dominguez Department of Nursing and Podiatry, University of Málaga, 29071, Spain. https://orcid.org/0000-0001-8524-1847
  • Javier Benítez-Porres Department of Human Physiology, Histology, Pathological Anatomy and Sports Physical Education, University of Málaga, 29071 Málaga https://orcid.org/0000-0001-7546-7965

DOI:

https://doi.org/10.47197/retos.v62.109115

Palavras-chave:

desempenho desportivo, desempenho anaeróbio, composição corporal, atletas, CrossFit, treino funcional de alta intensidade

Resumo

O principal objetivo do presente estudo foi estabelecer a associação entre as variáveis ​​de composição corporal (CC) total e segmentar e o desempenho anaeróbio, bem como criar os modelos de regressão que melhor predizem este desempenho em atletas de CrossFit® (CF). Cinquenta atletas, 25 homens e 25 mulheres (idade: 33,26 ± 6,81 anos; massa corporal: 72,57 ± 12,17 kg; altura: 169,55 ± 8,71 cm; IMC: 25,06 ± 2 ,31 kg-m-2) foram recrutados para participar e submetidos a Análise de WC utilizando anaeróbio de dupla energia. Os resultados mostram uma correlação significativa entre os valores de CC e o desempenho, variando de moderada (r = -0,34, p = 0,015) a quase perfeita (r = 0,96, p < 0,01). Além disso, os modelos de previsão de desempenho criados apresentaram capacidades preditivas que variaram entre 19% (p = 0,017) e 93% (p < 0,001). Todos os modelos de previsão foram criados utilizando variáveis ​​de massa magra total ou segmentar, excluindo outras. As variáveis ​​composição corporal e desempenho estudadas encontraram diferenças significativas entre homens e mulheres. Os resultados demonstram que as variáveis ​​da composição corporal são indicadores cruciais do desempenho anaeróbio em atletas de FC. Neste sentido, seria recomendável que os profissionais responsáveis ​​pelo desempenho desportivo considerassem esta informação no acompanhamento dos atletas durante a época ou na elaboração de programas de treino específicos. Da mesma forma, a utilização de equações de previsão pode ser útil como ferramenta para estimar valores de potência máxima e média.

Referências

Alsamir Tibana, R., Manuel Frade de Sousa, N., Prestes, J., da Cunha Nascimento, D., Ernesto, C., Falk Neto, J. H., Kennedy, M. D., & Azevedo Voltarelli, F. (2019). Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports, 7(7), 161. https://doi.org/10.3390/sports7070161

Alvero-Cruz, J. R., Cabanas Armesilla, M. D., Herrero De Lucas, A., Martínez Riaza, L., Moreno Pascual, C., Porta Manzañido, J., Sillero Quintana, M., & Sirvent Belando, J. E. (2010). Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. documento de consenso del grupo español de cineantropometría (grec)de la federación española de medicina del deporte (femede). Versión 2010. Archivos de Medicina Del Deporte, 26(139), 330–344. https://www.academia.edu/download/40094596/A_JJ_2010_Documento_de_consenso_330_139.pdf

Alvero-Cruz, J. R., Parent Mathias, V., Garcia Romero, J., Carrillo de Albornoz-Gil, M., Benítez-Porres, J., Ordoñez, F. J., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Prediction of Performance in a Short Trail Running Race: The Role of Body Composition. Frontiers in Physiology, 10(October), 1–7. https://doi.org/10.3389/fphys.2019.01306

Bar-Or, O. (1987). The Wingate Anaerobic Test An Update on Methodology, Reliability and Validity. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001

Bellar, D., Hatchett, A., Judge, L. W., Breaux, M. E., & Marcus, L. (2015). The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biology of Sport, 32(4), 315–320. https://doi.org/10.5604/20831862.1174771

Ben Mansour, G., Kacem, A., Ishak, M., Grélot, L., & Ftaiti, F. (2021). The effect of body composition on strength and power in male and female students. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1–11. https://doi.org/10.1186/s13102-021-00376-z

Beneke, R., Pollmann, C., Bleif, I., Leithäuser, R. M., & Hütler, H. (2002). How anaerobic is the wingate anaerobic test for humans? European Journal of Applied Physiology, 87(4–5), 388–392. https://doi.org/10.1007/s00421-002-0622-4

Butcher, S., Neyedly, T., Horvey, K., & Benko, C. (2015). Do physiological measures predict selected CrossFit® benchmark performance? Open Access Journal of Sports Medicine, 241. https://doi.org/10.2147/oajsm.s88265

Carreker, J. D., & Grosicki, G. J. (2020). Physiological Predictors of Performance on the CrossFit “Murph” Challenge. Sports, 8(7). https://doi.org/10.3390/sports8070092

Chiarlitti, N. A., Delisle-Houde, P., Reid, R. E. R., Kennedy, C., & Andersen, R. E. (2018). Importance of body composition in the national hockey league combine physiological assessments. Journal of Strength and Conditioning Research, 32(11), 3135–3142. https://doi.org/10.1519/JSC.0000000000002309

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences Second Edition (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/https://doi.org/10.4324/9780203771587

Collins, K. S., Christensen, B. K., Orr, R. M., Dulla, J. M., Dawes, J. J., & Lockie, R. G. (2022). Analysis of Total and Segmental Body Composition Relative to Fitness Performance Measures in Law Enforcement Recruits. International Journal of Exercise Science, 15(4), 245–260.

Corredor-Serrano, Luisa. F., García-Chaves, Diego. C., Dávila Bernal, A., & Lay Villay, Wan. S. (2023). Composición corporal, fuerza explosiva y agilidad en jugadores de baloncesto profesional. Retos, 49, 189–195.

Czeck, M. A., Roelofs, E. J., Dietz, C., Bosch, T. A., & Dengel, D. R. (2021). Body Composition and On-Ice Skate Times for National Collegiate Athletic Association Division I Collegiate Male and Female Ice Hockey Athletes. Journal of Strength and Conditioning Research, 36(1), 187–192. www.nsca.com

Di Vincenzo, O., Marra, M., Di Gregorio, A., Caldara, A., De Lorenzo, A., & Scalfi, L. (2019). Body composition and physical fitness in elite water polo athletes. IcSPORTS 2019 - Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support, 157–160. https://doi.org/10.5220/0008161401570160

Feito, Y., Heinrich, K., Butcher, S., & Poston, W. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076

Franchini, E. (2023). Energy System Contributions during Olympic Combat Sports: A Narrative Review. In Metabolites (Vol. 13, Issue 2). MDPI. https://doi.org/10.3390/metabo13020297

Gacesa, J. Z., Popadic, ;, Barak, O. F. ;, & Grujic, N. G. (2009). Maximal anaerobic power test in athletes of different sport disciplines. Journal of Strength and Conditioning Research, 23, 751. https://doi.org/10.1519/JSC.0b013e3181a07a9a

García-Chaves, D. C., Corredor-Serrano, L. F., & Díaz Millán, S. (2023). Relación entre la fuerza explosiva, composición corporal, somatotipo y algunos parámetros de desempeño físico en jugadores de rugby sevens. Retos, 47, 103–109.

Guo S, S., Zeller, C., Chumlea, W. C., & Siervogel, R. M. (1999). Aging, body composition, and lifestyle: the Fels Longitudinal Study. The American Journal of Clinical Nutrition, 70(3), 405–411. https://doi.org/https://doi.org/10.1093/ajcn/70.3.405

Hofman, N., Orie, J., Hoozemans, M. J. M., Foster, C., & De Koning, J. J. (2017). Wingate test as a strong predictor of 1500-m performance in elite speed skaters. International Journal of Sports Physiology and Performance, 12(10). https://doi.org/10.1123/ijspp.2016-0427

Ishida, A., Travis, S. K., & Stone, M. H. (2021). Associations of body composition, maximum strength, power characteristics with sprinting, jumping, and intermittent endurance performance in male intercollegiate soccer players. Journal of Functional Morphology and Kinesiology, 6(1), 0–7. https://doi.org/10.3390/jfmk6010007

Kale, M., & Akdoğan, E. (2020). Relationships between body composition and anaerobic performance parameters in female handball players. Physical Education of Students, 24(5), 265–270. https://doi.org/10.15561/20755279.2020.0502

Kim, J., Cho, H. C., Jung, H. S., & Yoon, J. D. (2011). Influence of performance level on anaerobic power and body composition in elite male Judoists. Journal of Strength and Conditioning Research, 25(5), 1346–1354. https://doi.org/10.1519/JSC.0b013e3181d6d97c

Kirchengast, S. (2010). Gender Differences in Body Composition from Childhood to Old Age: An Evolutionary Point of View. Journal of Life Sciences, 2(1), 1–10. https://doi.org/10.1080/09751270.2010.11885146

Lara-Sánchez, A. J., Zagalaz, M. L., Berdejo-Del-Fresno, D., & Martínez-López, E. J. (2011). Jump peak power assessment through power prediction equations in different samples. Journal of Strength and Conditioning Research, 25(7), 1957–1962. https://doi.org/10.1519/JSC.0b013e3181e06ef8

Lockie, R. G., Carlock, B. N., Ruvalcaba, T. J., Dulla, J. M., Orr, R. M., Dawes, J. J., & McGuire, M. B. (2021). Skeletal Muscle Mass and Fat Mass Relationships With Physical Fitness Test Performance in Law Enforcement Recruits Before Academy. Journal of Strength and Conditioning Research, 35(5), 1287–1295. https://doi.org/10.1519/JSC.0000000000003918

Losnegard, T., Myklebust, H., & Hallén, J. (2012). Anaerobic capacity as a determinant of performance in sprint skiing. Medicine and Science in Sports and Exercise, 44(4), 673–681. https://doi.org/10.1249/MSS.0b013e3182388684

Lukaski, H., & Raymond-Pope, C. J. (2021). New Frontiers of Body Composition in Sport. In International Journal of Sports Medicine (Vol. 42, Issue 7, pp. 588–601). Georg Thieme Verlag. https://doi.org/10.1055/a-1373-5881

Maciejczyk, M., Wiecek, M., Szymura, J., Szygula, Z., & Brown, L. E. (2015). Influence of increased body mass and body composition on cycling anaerobic power. Journal of Strength and Conditioning Research, 29(1), 58–65. https://doi.org/10.1519/JSC.0000000000000727

Mangine, G. T., & McDougle, J. M. (2022). CrossFit® open performance is affected by the nature of past competition experiences. BMC Sports Science, Medicine and Rehabilitation, 14(1). https://doi.org/10.1186/s13102-022-00434-0

Mangine, G. T., McDougle, J. M., & Feito, Y. (2022). Relationships Between Body Composition and Performance in the High-Intensity Functional Training Workout “Fran” are Modulated by Competition Class and Percentile Rank. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.893771

Mangine, G. T., Tankersley, J. E., McDougle, J. M., Velazquez, N., Roberts, M. D., Esmat, T. A., VanDusseldorp, T. A., & Feito, Y. (2020). Predictors of CrossFit Open Performance. Sports, 8(7). https://doi.org/10.3390/sports8070102

Maud, P. J., & Shultz, B. B. (1986). Gender comparisons in anaerobic power and anaerobic capacity tests. British Journal of Sports Medicine, 20(2), 51–54. https://doi.org/10.1136/bjsm.20.2.51

Menargues-Ramírez, R., Sospedra, I., Holway, F., Hurtado-Sánchez, J. A., & Martínez-Sanz, J. M. (2022). Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191711003

Michalik, K., Szczepan, S., Markowski, M., & Zatoń, M. (2022). The Relationship Among Body Composition and Anaerobic Capacity and the Sport Level of Elite Male Motorcycle Speedway Riders. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.812958

Pearson, J. R., Wadhi, T., Rauch, J. T., Thiel, J., Andersen, J. C., O’Sullivan, J., & De Souza, E. O. (2019). The Relationship Between Body Composition with Peak Force and Anaerobic Power in Collegiate Baseball Players. Medicine & Science in Sports & Exercise, 51(6S), 913–913. https://doi.org/10.1249/01.mss.0000563237.71052.cd

Rudnev, S. G. (2020). Body composition in athletes: History, methodology and computational prospects. Advances in Intelligent Systems and Computing, 1028 AISC, 159–165. https://doi.org/10.1007/978-3-030-35048-2_19

Sanfilippo, J., Krueger, D., Heiderscheit, B., & Binkley, N. (2019). Dual-Energy X-Ray Absorptiometry Body Composition in NCAA Division I Athletes: Exploration of Mass Distribution. Sports Health, 11(5), 453–460. https://doi.org/10.1177/1941738119861572

Sauvé, B., Haugan, M., & Paulsen, G. (2024). Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports, 12(6). https://doi.org/10.3390/sports12060162

Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196

Stephenson, M. L., Smith, D. T., Heinbaugh, E. M., Moynes, R. C., Rockey, S. S., Thomas, J. J., & Dai, B. (2015). Total and Lower Extremity Lean Mass Percentage Positively Correlates with Jump Performance. Journal of Strength and Conditioning Research, 29(8), 2167–2175. https://doi.org/10.1519/JSC.0000000000000851

Stickley, C. D., Wages, J. J., Kimura, I. F., & Hetzler, R. K. (2012). Validation of a nonexercise prediction equation of anaerobic power. Journal of Strength and Conditioning Research, 26(11), 3067–3074. https://doi.org/10.1519/JSC.0b013e318243fa1f

Triki, M., Rebai, H., Abroug, T., Masmoudi, K., Fellmann, N., Zouari, N., & Tabka, Z. (2012). Comparative study of body composition and anaerobic performance between football and judo groups. Science and Sports, 27(5), 293–299. https://doi.org/10.1016/j.scispo.2011.07.004

Vargas, V. Z., De Lira, C. A. B., Vancini, R. L., Rayes, A. B. R., & Andrade, M. S. (2018). Fat mass is negatively associated with the physiological ability of tissue to consume oxygen. Motriz. Revista de Educacao Fisica, 24(4). https://doi.org/10.1590/S1980-6574201800040010

Wulan, S. N., Westerterp, K. R., & Plasqui, G. (2010). Ethnic differences in body composition and the associated metabolic profile: A comparative study between Asians and Caucasians. In Maturitas (Vol. 65, Issue 4, pp. 315–319). https://doi.org/10.1016/j.maturitas.2009.12.012

Zaras, N., Stasinaki, A.-N., Spiliopoulou, P., Hadjicharalambous, M., & Terzis, G. (2020). Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports, 8(67). https://doi.org/https://doi.org/10.3390/sports8050067

Zeitz, E. K., Cook, L. F., Dexheimer, J. D., Lemez, S., Leyva, W. D., Terbio, I. Y., Tran, J. R., & Jo, E. (2020). The Relationship between CrossFit® Performance and Laboratory-Based Measurements of Fitness. Sports, 8(8). https://doi.org/10.3390/sports8080112

Publicado

2024-11-20

Como Citar

Ponce-García, T., García-Romero, J., Carrasco-Fernández, L., Castillo-Dominguez, A., & Benítez-Porres, J. (2024). Associação entre a composição corporal total e segmentar e o desempenho anaeróbio em atletas de Crossfit®: diferenças entre sexos e previsão de desempenho. Retos, 62, 543–552. https://doi.org/10.47197/retos.v62.109115

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.