Associação entre a composição corporal total e segmentar e o desempenho anaeróbio em atletas de Crossfit®: diferenças entre sexos e previsão de desempenho
DOI:
https://doi.org/10.47197/retos.v62.109115Palavras-chave:
desempenho desportivo, desempenho anaeróbio, composição corporal, atletas, CrossFit, treino funcional de alta intensidadeResumo
O principal objetivo do presente estudo foi estabelecer a associação entre as variáveis de composição corporal (CC) total e segmentar e o desempenho anaeróbio, bem como criar os modelos de regressão que melhor predizem este desempenho em atletas de CrossFit® (CF). Cinquenta atletas, 25 homens e 25 mulheres (idade: 33,26 ± 6,81 anos; massa corporal: 72,57 ± 12,17 kg; altura: 169,55 ± 8,71 cm; IMC: 25,06 ± 2 ,31 kg-m-2) foram recrutados para participar e submetidos a Análise de WC utilizando anaeróbio de dupla energia. Os resultados mostram uma correlação significativa entre os valores de CC e o desempenho, variando de moderada (r = -0,34, p = 0,015) a quase perfeita (r = 0,96, p < 0,01). Além disso, os modelos de previsão de desempenho criados apresentaram capacidades preditivas que variaram entre 19% (p = 0,017) e 93% (p < 0,001). Todos os modelos de previsão foram criados utilizando variáveis de massa magra total ou segmentar, excluindo outras. As variáveis composição corporal e desempenho estudadas encontraram diferenças significativas entre homens e mulheres. Os resultados demonstram que as variáveis da composição corporal são indicadores cruciais do desempenho anaeróbio em atletas de FC. Neste sentido, seria recomendável que os profissionais responsáveis pelo desempenho desportivo considerassem esta informação no acompanhamento dos atletas durante a época ou na elaboração de programas de treino específicos. Da mesma forma, a utilização de equações de previsão pode ser útil como ferramenta para estimar valores de potência máxima e média.
Referências
Alsamir Tibana, R., Manuel Frade de Sousa, N., Prestes, J., da Cunha Nascimento, D., Ernesto, C., Falk Neto, J. H., Kennedy, M. D., & Azevedo Voltarelli, F. (2019). Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports, 7(7), 161. https://doi.org/10.3390/sports7070161
Alvero-Cruz, J. R., Cabanas Armesilla, M. D., Herrero De Lucas, A., Martínez Riaza, L., Moreno Pascual, C., Porta Manzañido, J., Sillero Quintana, M., & Sirvent Belando, J. E. (2010). Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo. documento de consenso del grupo español de cineantropometría (grec)de la federación española de medicina del deporte (femede). Versión 2010. Archivos de Medicina Del Deporte, 26(139), 330–344. https://www.academia.edu/download/40094596/A_JJ_2010_Documento_de_consenso_330_139.pdf
Alvero-Cruz, J. R., Parent Mathias, V., Garcia Romero, J., Carrillo de Albornoz-Gil, M., Benítez-Porres, J., Ordoñez, F. J., Rosemann, T., Nikolaidis, P. T., & Knechtle, B. (2019). Prediction of Performance in a Short Trail Running Race: The Role of Body Composition. Frontiers in Physiology, 10(October), 1–7. https://doi.org/10.3389/fphys.2019.01306
Bar-Or, O. (1987). The Wingate Anaerobic Test An Update on Methodology, Reliability and Validity. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001
Bellar, D., Hatchett, A., Judge, L. W., Breaux, M. E., & Marcus, L. (2015). The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biology of Sport, 32(4), 315–320. https://doi.org/10.5604/20831862.1174771
Ben Mansour, G., Kacem, A., Ishak, M., Grélot, L., & Ftaiti, F. (2021). The effect of body composition on strength and power in male and female students. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1–11. https://doi.org/10.1186/s13102-021-00376-z
Beneke, R., Pollmann, C., Bleif, I., Leithäuser, R. M., & Hütler, H. (2002). How anaerobic is the wingate anaerobic test for humans? European Journal of Applied Physiology, 87(4–5), 388–392. https://doi.org/10.1007/s00421-002-0622-4
Butcher, S., Neyedly, T., Horvey, K., & Benko, C. (2015). Do physiological measures predict selected CrossFit® benchmark performance? Open Access Journal of Sports Medicine, 241. https://doi.org/10.2147/oajsm.s88265
Carreker, J. D., & Grosicki, G. J. (2020). Physiological Predictors of Performance on the CrossFit “Murph” Challenge. Sports, 8(7). https://doi.org/10.3390/sports8070092
Chiarlitti, N. A., Delisle-Houde, P., Reid, R. E. R., Kennedy, C., & Andersen, R. E. (2018). Importance of body composition in the national hockey league combine physiological assessments. Journal of Strength and Conditioning Research, 32(11), 3135–3142. https://doi.org/10.1519/JSC.0000000000002309
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences Second Edition (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/https://doi.org/10.4324/9780203771587
Collins, K. S., Christensen, B. K., Orr, R. M., Dulla, J. M., Dawes, J. J., & Lockie, R. G. (2022). Analysis of Total and Segmental Body Composition Relative to Fitness Performance Measures in Law Enforcement Recruits. International Journal of Exercise Science, 15(4), 245–260.
Corredor-Serrano, Luisa. F., García-Chaves, Diego. C., Dávila Bernal, A., & Lay Villay, Wan. S. (2023). Composición corporal, fuerza explosiva y agilidad en jugadores de baloncesto profesional. Retos, 49, 189–195.
Czeck, M. A., Roelofs, E. J., Dietz, C., Bosch, T. A., & Dengel, D. R. (2021). Body Composition and On-Ice Skate Times for National Collegiate Athletic Association Division I Collegiate Male and Female Ice Hockey Athletes. Journal of Strength and Conditioning Research, 36(1), 187–192. www.nsca.com
Di Vincenzo, O., Marra, M., Di Gregorio, A., Caldara, A., De Lorenzo, A., & Scalfi, L. (2019). Body composition and physical fitness in elite water polo athletes. IcSPORTS 2019 - Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support, 157–160. https://doi.org/10.5220/0008161401570160
Feito, Y., Heinrich, K., Butcher, S., & Poston, W. (2018). High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076
Franchini, E. (2023). Energy System Contributions during Olympic Combat Sports: A Narrative Review. In Metabolites (Vol. 13, Issue 2). MDPI. https://doi.org/10.3390/metabo13020297
Gacesa, J. Z., Popadic, ;, Barak, O. F. ;, & Grujic, N. G. (2009). Maximal anaerobic power test in athletes of different sport disciplines. Journal of Strength and Conditioning Research, 23, 751. https://doi.org/10.1519/JSC.0b013e3181a07a9a
García-Chaves, D. C., Corredor-Serrano, L. F., & Díaz Millán, S. (2023). Relación entre la fuerza explosiva, composición corporal, somatotipo y algunos parámetros de desempeño físico en jugadores de rugby sevens. Retos, 47, 103–109.
Guo S, S., Zeller, C., Chumlea, W. C., & Siervogel, R. M. (1999). Aging, body composition, and lifestyle: the Fels Longitudinal Study. The American Journal of Clinical Nutrition, 70(3), 405–411. https://doi.org/https://doi.org/10.1093/ajcn/70.3.405
Hofman, N., Orie, J., Hoozemans, M. J. M., Foster, C., & De Koning, J. J. (2017). Wingate test as a strong predictor of 1500-m performance in elite speed skaters. International Journal of Sports Physiology and Performance, 12(10). https://doi.org/10.1123/ijspp.2016-0427
Ishida, A., Travis, S. K., & Stone, M. H. (2021). Associations of body composition, maximum strength, power characteristics with sprinting, jumping, and intermittent endurance performance in male intercollegiate soccer players. Journal of Functional Morphology and Kinesiology, 6(1), 0–7. https://doi.org/10.3390/jfmk6010007
Kale, M., & Akdoğan, E. (2020). Relationships between body composition and anaerobic performance parameters in female handball players. Physical Education of Students, 24(5), 265–270. https://doi.org/10.15561/20755279.2020.0502
Kim, J., Cho, H. C., Jung, H. S., & Yoon, J. D. (2011). Influence of performance level on anaerobic power and body composition in elite male Judoists. Journal of Strength and Conditioning Research, 25(5), 1346–1354. https://doi.org/10.1519/JSC.0b013e3181d6d97c
Kirchengast, S. (2010). Gender Differences in Body Composition from Childhood to Old Age: An Evolutionary Point of View. Journal of Life Sciences, 2(1), 1–10. https://doi.org/10.1080/09751270.2010.11885146
Lara-Sánchez, A. J., Zagalaz, M. L., Berdejo-Del-Fresno, D., & Martínez-López, E. J. (2011). Jump peak power assessment through power prediction equations in different samples. Journal of Strength and Conditioning Research, 25(7), 1957–1962. https://doi.org/10.1519/JSC.0b013e3181e06ef8
Lockie, R. G., Carlock, B. N., Ruvalcaba, T. J., Dulla, J. M., Orr, R. M., Dawes, J. J., & McGuire, M. B. (2021). Skeletal Muscle Mass and Fat Mass Relationships With Physical Fitness Test Performance in Law Enforcement Recruits Before Academy. Journal of Strength and Conditioning Research, 35(5), 1287–1295. https://doi.org/10.1519/JSC.0000000000003918
Losnegard, T., Myklebust, H., & Hallén, J. (2012). Anaerobic capacity as a determinant of performance in sprint skiing. Medicine and Science in Sports and Exercise, 44(4), 673–681. https://doi.org/10.1249/MSS.0b013e3182388684
Lukaski, H., & Raymond-Pope, C. J. (2021). New Frontiers of Body Composition in Sport. In International Journal of Sports Medicine (Vol. 42, Issue 7, pp. 588–601). Georg Thieme Verlag. https://doi.org/10.1055/a-1373-5881
Maciejczyk, M., Wiecek, M., Szymura, J., Szygula, Z., & Brown, L. E. (2015). Influence of increased body mass and body composition on cycling anaerobic power. Journal of Strength and Conditioning Research, 29(1), 58–65. https://doi.org/10.1519/JSC.0000000000000727
Mangine, G. T., & McDougle, J. M. (2022). CrossFit® open performance is affected by the nature of past competition experiences. BMC Sports Science, Medicine and Rehabilitation, 14(1). https://doi.org/10.1186/s13102-022-00434-0
Mangine, G. T., McDougle, J. M., & Feito, Y. (2022). Relationships Between Body Composition and Performance in the High-Intensity Functional Training Workout “Fran” are Modulated by Competition Class and Percentile Rank. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.893771
Mangine, G. T., Tankersley, J. E., McDougle, J. M., Velazquez, N., Roberts, M. D., Esmat, T. A., VanDusseldorp, T. A., & Feito, Y. (2020). Predictors of CrossFit Open Performance. Sports, 8(7). https://doi.org/10.3390/sports8070102
Maud, P. J., & Shultz, B. B. (1986). Gender comparisons in anaerobic power and anaerobic capacity tests. British Journal of Sports Medicine, 20(2), 51–54. https://doi.org/10.1136/bjsm.20.2.51
Menargues-Ramírez, R., Sospedra, I., Holway, F., Hurtado-Sánchez, J. A., & Martínez-Sanz, J. M. (2022). Evaluation of Body Composition in CrossFit® Athletes and the Relation with Their Results in Official Training. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191711003
Michalik, K., Szczepan, S., Markowski, M., & Zatoń, M. (2022). The Relationship Among Body Composition and Anaerobic Capacity and the Sport Level of Elite Male Motorcycle Speedway Riders. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.812958
Pearson, J. R., Wadhi, T., Rauch, J. T., Thiel, J., Andersen, J. C., O’Sullivan, J., & De Souza, E. O. (2019). The Relationship Between Body Composition with Peak Force and Anaerobic Power in Collegiate Baseball Players. Medicine & Science in Sports & Exercise, 51(6S), 913–913. https://doi.org/10.1249/01.mss.0000563237.71052.cd
Rudnev, S. G. (2020). Body composition in athletes: History, methodology and computational prospects. Advances in Intelligent Systems and Computing, 1028 AISC, 159–165. https://doi.org/10.1007/978-3-030-35048-2_19
Sanfilippo, J., Krueger, D., Heiderscheit, B., & Binkley, N. (2019). Dual-Energy X-Ray Absorptiometry Body Composition in NCAA Division I Athletes: Exploration of Mass Distribution. Sports Health, 11(5), 453–460. https://doi.org/10.1177/1941738119861572
Sauvé, B., Haugan, M., & Paulsen, G. (2024). Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports, 12(6). https://doi.org/10.3390/sports12060162
Smith, J. C., & Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. British Journal of Sports Medicine, 25(4), 196–199. https://doi.org/10.1136/bjsm.25.4.196
Stephenson, M. L., Smith, D. T., Heinbaugh, E. M., Moynes, R. C., Rockey, S. S., Thomas, J. J., & Dai, B. (2015). Total and Lower Extremity Lean Mass Percentage Positively Correlates with Jump Performance. Journal of Strength and Conditioning Research, 29(8), 2167–2175. https://doi.org/10.1519/JSC.0000000000000851
Stickley, C. D., Wages, J. J., Kimura, I. F., & Hetzler, R. K. (2012). Validation of a nonexercise prediction equation of anaerobic power. Journal of Strength and Conditioning Research, 26(11), 3067–3074. https://doi.org/10.1519/JSC.0b013e318243fa1f
Triki, M., Rebai, H., Abroug, T., Masmoudi, K., Fellmann, N., Zouari, N., & Tabka, Z. (2012). Comparative study of body composition and anaerobic performance between football and judo groups. Science and Sports, 27(5), 293–299. https://doi.org/10.1016/j.scispo.2011.07.004
Vargas, V. Z., De Lira, C. A. B., Vancini, R. L., Rayes, A. B. R., & Andrade, M. S. (2018). Fat mass is negatively associated with the physiological ability of tissue to consume oxygen. Motriz. Revista de Educacao Fisica, 24(4). https://doi.org/10.1590/S1980-6574201800040010
Wulan, S. N., Westerterp, K. R., & Plasqui, G. (2010). Ethnic differences in body composition and the associated metabolic profile: A comparative study between Asians and Caucasians. In Maturitas (Vol. 65, Issue 4, pp. 315–319). https://doi.org/10.1016/j.maturitas.2009.12.012
Zaras, N., Stasinaki, A.-N., Spiliopoulou, P., Hadjicharalambous, M., & Terzis, G. (2020). Lean Body Mass, Muscle Architecture, and Performance in Well-Trained Female Weightlifters. Sports, 8(67). https://doi.org/https://doi.org/10.3390/sports8050067
Zeitz, E. K., Cook, L. F., Dexheimer, J. D., Lemez, S., Leyva, W. D., Terbio, I. Y., Tran, J. R., & Jo, E. (2020). The Relationship between CrossFit® Performance and Laboratory-Based Measurements of Fitness. Sports, 8(8). https://doi.org/10.3390/sports8080112
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Tomás Ponce-García, Jerónimo García-Romero, Laura Carrasco-Fernández, Alejandro Castillo-Dominguez, Javier Benítez-Porres
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess