Padrões de frequência de passada durante corrida em esteira e ao ar livre em corredores de resistência

Autores

DOI:

https://doi.org/10.47197/retos.v57.104569

Palavras-chave:

Cadencia, Economía de Carrera, Velocidad, Exterior (Cadence, Running Economy, Velocity, Outdoor)

Resumo

Este estudo teve como objetivo i) estudar a concordância entre um relógio esportivo (Suunto Ambit2) com um dispositivo fotoelétrico (Optogait) como instrumento de referência na medição de frequências de passada (SF) e comprimentos de passada (SL); ii) observar os padrões de passada durante a corrida ao ar livre; e iii) analisar o efeito das manipulações do SF na economia de funcionamento monitorada por um analisador de gases e com base na análise observacional. Foram analisados 160 corredores recreativos em velocidades entre 8-14 km·h-1. O Suunto Ambit2 concordou com o sistema de referência [r=0,99 (0,99-1,00); Erro Típico da Estimativa=0,58 passadas∙min-1 e 0,02m]. Os corredores tendiam a manter o SF constante [Coeficiente de Variação (CV) = 2,4%]) durante variações na velocidade (CV = 6,8%) enquanto dependiam de ajustes de SL (CV = 6,5%) durante a corrida ao ar livre. Finalmente, os corredores pareciam manter um baixo custo de corrida com seu SF selecionado automaticamente (média = 81,3 passadas∙min-1), mas um aumento de até 12% poderia ser benéfico quando a velocidade muda, sem prejudicar o custo de corrida.

Palavras-chave: Cadência, Economia de Corrida, Velocidade, Outdoor.

Referências

Adams, D., Pozzi, F., Carroll, A., Rombach, A., & Zeni Jr, J. (2016). Validity and reliability of a commercial fitness watch for measuring running dynamics. Journal of orthopaedic & sports physical therapy, 46(6), 471-476.

Alonso, D. (2003). La aplicación de los ritmos de carrera en el entrenamiento de la prueba de maratón para la mejora del rendimiento mediante la utilización de las reservas lipolíticas. Revista Internacional de Medicina y Ciencias de la Ac-tividad Física y del Deporte, 3(9), 1.

Amano, T., Ishitobi, M., Ogura, Y., Inoue, Y., Koga, S., Nishiyasu, T., & Kondo, N. (2016). Effect of stride frequency on thermoregulatory responses during endurance running in distance runners. Journal of thermal biology, 61, 61-66

Barton, C. J., Bonanno, D. R., Carr, J., Neal, B. S., Malliaras, P., Franklyn-Miller, A., & Menz, H. B. (2016). Run-ning retraining to treat lower limb injuries: a mixed-methods study of current evidence synthesised with expert opinion. British journal of sports medicine, 50(9), 513-526.

Brughelli, M., Cronin, J., & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. The Journal of Strength & Conditioning Research, 25(4), 933-939.

Cavanagh, P. R., & Kram, R. (1989). Stride length in distance running: velocity, body dimensions, and added mass effects. Med Sci Sports Exerc, 21(4), 467-79.

Cavanagh, P. R., & Williams, K. R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine and science in sports and exercise, 14(1), 30-35.

Cheung, R. T., & Davis, I. S. (2011). Landing pattern modification to improve patellofemoral pain in runners: a case series. Journal of orthopaedic & sports physical therapy, 41(12), 914-919.

Cohen, J. (1962). The statistical power of abnormal-social psychological research: a review. The Journal of Abnormal and Social Psychology, 65(3), 145.

Daniels J. Daniels’ Running Formula (2013). 3nd ed. Hanlon T, Marty C, Wolpert T, MacDonald P, editors. Mesa, Arizona: Human Kinetics Publishers, Inc; 320 p.

De Ruiter, C. J., Verdijk, P. W., Werker, W., Zuidema, M. J., & de Haan, A. (2013). Stride frequency in relation to oxygen consumption in experienced and novice runners. European journal of sport science, 14(3), 251-258.

De Ruiter, C. J., Van Daal, S., & Van Dieën, J. H. (2020). Individual optimal step frequency during outdoor running. European journal of sport science, 20(2), 182-190.

Dos Santos, A. F., Nakagawa, T. H., Nakashima, G. Y., Maciel, C. D., & Serrão, F. (2016). The effects of forefoot striking, increasing step rate, and forward trunk lean running on trunk and lower limb kinematics and com-fort. International journal of sports medicine, 37(5), 369-373.

Fletcher, J. R., Esau, S. P., & MacIntosh, B. R. (2009). Economy of running: beyond the measurement of oxygen uptake. Journal of Applied Physiology, 107(6), 1918-1922.

Garcia de Dionisio, S. F., Gómez-Carmona, C. D., Bastida-Castillo, A., Rojas-Valverde, D., & Pino-Ortega, J. (2020). Slope influence on the trail runner's physical load: a case study. Revista internacional de medicina y ciencias de la actividad física y del deporte, 20(80), 641-658.

Heiderscheit, B. C., Chumanov, E. S., Michalski, M. P., Wille, C. M., & Ryan, M. B. (2011). Effects of step rate ma-nipulation on joint mechanics during running. Medicine and science in sports and exercise, 43(2), 296.

Hobara, H., Kanosue, K., & Suzuki, S. (2007). Changes in muscle activity with increase in leg stiffness during hop-ping. Neuroscience letters, 418(1), 55-59.

Hobara, H., Sato, T., Sakaguchi, M., & Nakazawa, K. (2012). Step frequency and lower extremity loading during running. International journal of sports medicine, 33(04), 310-313.

Hunter, I., & Smith, G. A. (2007). Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. European journal of applied physiology, 100(6), 653-661.

Hunter, I., Lee, K., Ward, J., & Tracy, J. (2017). Self-optimization of stride length among experienced and inexperi-enced runners. International journal of exercise science, 10(3), 446.

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3.

Lee, D. C., Brellenthin, A. G., Thompson, P. D., Sui, X., Lee, I. M., & Lavie, C. J. (2017). Running as a key lifestyle medicine for longevity. Progress in cardiovascular diseases, 60(1), 45-55.

Lenhart, R. L., Thelen, D. G., Wille, C. M., Chumanov, E. S., & Heiderscheit, B. C. (2014). Increasing running step rate reduces patellofemoral joint forces. Medicine and science in sports and exercise, 46(3), 557.

Lieberman, D. E., Warrener, A. G., Wang, J., & Castillo, E. R. (2015). Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. Journal of Ex-perimental Biology, 218(21), 3406-3414.

Mercer, J., Dolgan, J., Griffin, J., & Bestwick, A. (2008). The physiological importance of preferred stride frequency during running at different speeds. Journal of Exercise Physiology Online, 11(3).

Moore, I. S., Ashford, K. J., Cross, C., Hope, J., Jones, H. S., & McCarthy-Ryan, M. (2019). Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Frontiers in sports and active living, 1, 53.

Noehren, B., Scholz, J., & Davis, I. (2011). The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. British journal of sports medicine, 45(9), 691-696.

Nummela, A., Keränen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. Interna-tional journal of sports medicine, 28(08), 655-661.

Patoz, A., Lussiana, T., Gindre, C., & Mourot, L. (2020). Predicting temporal gait kinematics: anthropometric char-acteristics and global running pattern matter. Frontiers in Physiology, 11.

Quinn, T. J., Dempsey, S. L., LaRoche, D. P., Mackenzie, A. M., & Cook, S. B. (2019). Step frequency training im-proves running economy in well-trained female runners. J Strength and Cond Research.

Santos-Concejero, J., Domínguez, C. G., de Letona, I. B. L., Lili, J. Z., Astiazaran, J. I., & Orozko, S. M. G. (2013). Comienzo de la acumulación de lactato sanguíneo como predictor del rendimiento en atletas de élite. Retos: nuevas tendencias en educación física, deporte y recreación, (23), 67-69.

Schubert, A. G., Kempf, J., & Heiderscheit, B. C. (2014). Influence of stride frequency and length on running mechan-ics: a systematic review. Sports health, 6(3), 210-217.

Shaw, A. J., Ingham, S. A., & Folland, J. P. (2014). The valid measurement of running economy in runners. Medicine and science in sports and exercise, 46(10), 1968-1973.

Snyder, K. L., & Farley, C. T. (2011). Energetically optimal stride frequency in running: the effects of incline and de-cline. Journal of Experimental Biology, 214(12), 2089-2095.

Snyder, K. L., Snaterse, M., & Donelan, J. M. (2012). Running perturbations reveal general strategies for step fre-quency selection. Journal of applied physiology, 112(8), 1239-1247.

Soidán, J. L. G., & Giráldez, V. A. (2003). Análisis de las lesiones más frecuentes en pruebas de velocidad, medio fondo y fondo. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte, 3(12), 5.

van Oeveren, B. T., De Ruiter, C. J., Beek, P. J., & Van Dieën, J. H. (2017). Optimal stride frequencies in running at different speeds. PloS one, 12(10), e0184273.

van Oeveren, B. T., De Ruiter, C. J., Hoozemans, M. J. M., Beek, P. J., & Van Dieën, J. H. (2019). Inter-individual differences in stride frequencies during running obtained from wearable data. Journal of sports sciences, 37(17), 1996-2006.

Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of applied physiology, 89(5), 1991-1999.

Witte, T. H., & Wilson, A. M. (2004). Accuracy of non-differential GPS for the determination of speed over ground. Journal of biomechanics, 37(12), 1891-1898.

Publicado

2024-08-03

Como Citar

Miqueleiz, U., Cabello-Olmo, M., & Aguado-Jimenez, R. (2024). Padrões de frequência de passada durante corrida em esteira e ao ar livre em corredores de resistência. Retos, 57, 131–136. https://doi.org/10.47197/retos.v57.104569

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.