O treinamento isométrico promove alterações na acetilcolinesterase e na força muscular

Autores

DOI:

https://doi.org/10.47197/retos.v55.103877

Palavras-chave:

Treinamento de Força Isométrico, Solear, Extensor Longo dos Dedos e Enzima.

Resumo

.Introdução: O treinamento de força isométrica (EFI) é um componente importante de diferentes tipos de esportes e outras atividades da vida diária. No entanto, até o momento, nenhum estudo relacionou o treinamento de força isométrica a alterações na atividade da acetilcolinesterase (AChE). Objetivo: Avaliar os efeitos do IFE na atividade da AChE e na força muscular. Material e Métodos: Ratos Wistar (n =20) foram divididos em 2 grupos: Grupo Controle (Ctr) (sedentário) e Grupo Treinado (ETr) (submetido a 8 semanas de treinamento de força isométrica). A força muscular e a atividade da acetilcolinesterase foram avaliadas no músculo sóleo (SOL) e no músculo extensor longo dos dedos (ELD). Resultados: O peso corporal dos animais treinados foi 7,39% menor (p < 0,01) e o peso dos ELD foi 25% maior (p < 0,05) em comparação aos ratos Ctr. Houve aumento de 30,36% na força dos animais treinados. quarta semana (p < 0,006) e 26,41% na oitava semana de treinamento (p < 0,003). Além disso, foi observado um aumento de 46,64% na atividade da AChE no SOL. Em contraste, houve uma redução de 55,36% na atividade da AChE no ELD. Conclusão: Nossos achados indicam que o IFE de baixa carga pode causar alterações bioquímicas, zoométricas e funcionais.

Palavras-chave: Treinamento de Força Isométrica, Sóleo, Extensor Longo dos Dedos e Enzimas.

Referências

Abe, T., DeHoyos, D. V., Pollock, M. L., & Garzarella, L. (2000). Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. European Journal of Applied Physiology and Occupational Physiology, 81(3), 174-180. https://doi.org/10.1007/s004210050027

Anglister, L. (1991). Acetylcholinesterase from the motor-nerve terminal accumulates on the synaptic basal lamina of the myofiber. Journal of Cell Biology, 115(3), 755-764. https://doi.org/10.1083/jcb.115.3.755

Anglister, L., Etlin, A., Finkel, E., Durrant, A. R., & Lev-Tov, A. (2008) Cholinesterases in development and dis-ease. Chemico-Biological Interactions, 175(1-3), 92-100. https://doi.org/10.1016/j.cbi.2008.04.046

Barthold, S. W., Bayne, K. A., & Davis, M. A. (2011). Guide for the care and use of laboratory animals, 8th edition.

Bertelli, J. A., & Mira, J. C. (1995). The grasping test - a simple behavioral-method for objective quantitative assess-ment of peripheral-nerve regeneration in the rat. Journal of Neuroscience Methods, 58(1-2), 151-155. https://doi.org/10.1016/0165-0270(94)00169-h

Blotnick, E., Hamra-Amitai, Y., Wald, C., Brenner, T., & Anglister, L. (2012). Changes in acetylcholinesterase in experimental autoimmune myasthenia gravis and in response to treatment with a specific antisense. The European Journal of Neuroscience, 36(8), 3077-3085. https://doi.org/10.1111/j.1460-9568.2012.08218.x.

Bonnet, N., Laroche, N., Beaupied, H., Vico, L., Dolleans, E., Benhamou, C. L., & Courteix, D. (2007). Doping dose of salbutamol and exercise training: impact on the skeleton of ovariectomized rats. Journal of Applied Physiology (1985), 103(2), 524-533. https://doi.org/10.1152/japplphysiol.01319.2006

Castro Jimenez, L. E., Galvez Pardo, A. Y., Guzman Quintero, G. A., & Garcia Muñoz, A. I. (2019). Explosive strength in older adults, training effects on maximum strength. Retos, 36, 64-68. https://doi.org/10.47197/retos.v36i36.66715

Cohen, J. (1977). Statistical power analysis for behavioral sciences (revised ed.). New York: Academic Press.

Costa e Silva, G., Costa, P. B., Conceição, R. R., Pimenta, L., Almeida, R. L., & Sato, M. A. (2019). Acute effects of different static stretching exercise orders on cardiovascular and autonomic responses. Scientific Reports, 9(1), 15738. https://doi.org/10.1038/s41598-019-52055-2

Decker, M. M., & Berman, H. A. (1990). Denervation-induced alterations of acetylcholinesterase in denervated and nondenervated muscle. Experimental Neurology, 109(2), 247-55. https://doi.org/10.1016/0014-4886(90)90080-c

Ellman, G. L., Courtney, K. D., Adres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determina-tion of acetylcholinesterase activity. Biochemical Pharmacology, 7(1), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Farzi, M. A., Sadigh-Eteghad, S., Ebrahimi, K., & Talebi, M. (2019). Exercise Improves Recognition Memory and Acetylcholinesterase Activity in the Beta Amyloid-Induced Rat Model of Alzheimer's Disease. Annals of Neurosci-ence, 25(3), 121‐125. https://doi.org/10.1159/000488580

Figard, H., Gaume, V., Mougin, F., Demeougeot, C., & Berthelot, A. (2006). Beneficial effects of isometric strength training on endothelial dysfunction in rats. Applied Physiology, Nutrition, and Metabolism, 31(5), 621-630. https://doi.org/10.1139/h06-070

Finer, J. T., Simmons, R. M., & Spudich, J. A. (1994). Single myosin molecule mechanics - piconewton forces and nanometer steps. Nature, 368(6467), 113-119. https://doi.org/10.1038/368113a0

Galaviz Berelleza, R., Trejo, M., Borbón Román, J. C., Alarcón Meza, E. I., Pineda Espejel, H. A., Arrayales Millan, E. M., Robles Hernández, G. S., & Cutti Riveros, L. (2021). Effect of a strength training program on IGF-1 in older adults with obesity and controlled hypertension. Retos, 39, 253-256. https://doi.org/10.47197/retos.v0i39.74723

Garfinkel, S., & Cafarelli, E. (1992). Relative changes in maximal force, emg, and muscle cross-sectional area after isometric training. Medicine and Science in Sports and Exercise, 24(11), 1220-1227. PMID: 1435173

Gaspersic, R., Koritnik, B., Crne-Finderle, N., & Sketelj, J. (1999). Acetylcholinesterase in the neuromuscular junc-tion. Chemico-Biological Interactions, 119(1), 301-308.

Gorzi, A., Hajabi, H., Gharakhanlou, R., & Azad, A. (2013). Effects of Endurance Training on A12 Acetyl Cholines-terase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats. Zahedan Journal of Research in Medical Science, 15(10), 28-31.

Jasmin, B. J., & Gisiger, V. (1990). Regulation by exercise of the pool of g4-acetylcholinesterase characterizing fast muscles - opposite effect of running training in antagonist muscles. Journal of Neuroscience, 10(5), 1444-1454. https://doi.org/10.1523/JNEUROSCI.10-05-01444.1990

Kaufer, D., Friedman, A., Pavlovsky, L., & Soreq, H. (1998). Stress and acetylcholinesterase responses promote de-layed alterations in hippocampal function. Neuroscience Letters, S22-S22.

Kovacs, K. J. (1998). c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochemistry In-ternational, 33(4), 287-297. https://doi.org/10.1016/s0197-0186(98)00023-0

Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: Progression and exercise prescrip-tion. Medicine and Science in Sports and Exercise, 36(4), 674-688. https://doi.org/10.1249/01.mss.0000121945.36635.61

Lac, G., & Cavalie, H. (1999). A rat model of progressive isometric strength training. Archives of Physiology and Bio-chemistry, 107(2), 144-151. https://doi.org/10.1076/apab.107.2.144.4337

Le-Cerf Paredes, L., Valdés-Badilla, P., & Guzman Muñoz, E. (2022). Effects of strength training on the fitness in boys and girls with overweight and obesity: a systematic review. Retos, 43, 233-242. https://doi.org/10.47197/retos.v43i0.87756

Marcel, V., Palacios, L. G., Pertuy, C., Masson, P., & Fournier, D. (1998). Two invertebrate acetylcholinesterases show activation followed by inhibition with substrate concentration. The Biochemical Journal, 329(2), 329-334. https://doi.org/10.1042/bj3290329

Morey, E. R., Sabelman, E. E., Turner, R. T., & Baylink, D. J. (1979). A new rat model simulating some aspects of space flight. Physiologist, 22(6), S23-S24. PMID: 545372

Moritani, T., & Devries, H. A. (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. American Journal of Physical Medicine and Rehabilitation, 58(3), 115-130. PMID: 453338.

Navarrete, R., & Vrbova, G. (1983). Changes of activity patterns in slow and fast muscles during postnatal-development. Developmental Brain Research, 8(1), 11-19. https://doi.org/10.1016/0165-3806(83)90152-9

Nikbin, S., Tajik, A., Allahyari, P., Matin, G., Roote, S. S. H., Barati, E., Ayazi, M., Karimi, L., Yazdi, F. D., Ja-vadinead, N., Azarbayjni, M. A. (2020). Aerobic exercise and eugenol supplementation ameliorated liver injury in-duced by chlorpyrifos via modulation acetylcholinesterase activation and antioxidant defense. Environmental Toxi-cology, 35(7), 783-793. https://doi.org/10.1002/tox.22913

Pastuszewska1, B., Ochtabinska1, A., & Morawski, A. (2000). A note on the nutritional adequacy of stock diets for laboratory rats and mice. Journal of Animal and Feed Sciences, 9(3), 533-542. https://doi.org/10.22358/jafs/68075/2000

Pereira, J. M., Costa e Silva, G., Conceição, R. R., Laureano-Melo, R., Giannocco, G., Sato, M. A., Bentes, C. M., & Simão, R. (2022). Influence of Resistance Training Exercise Order on Acute Thyroid Hormone Responses. Inter-national Journal of Exercise Science, 15(2), 760-770. PMID: 35992182

Pregelj, P., & Sketelj, J. (2002). Role of load bearing in acetylcholinesterase regulation in rat skeletal muscles. Journal of Neuroscience Research, 67(1), 114-121. https://doi.org/10.1002/jnr.3000

Puls, T., Wu, J. J., Zimmerman, T. L., Zhang, L., Ehrliche, B. E, Berchtold, M. W., HoekJ. B., Karpen, S. J., Na-thanson, M. H., & Bennett, A. M. (2002). Epidermal growth factor-mediated activation of the ETS domain tran-scription factor Elk-1 requires nuclear calcium. The Journal of Biological Chemistry, 277(30), 27517-27527 https://doi.org/27517-27527. 10.1074/jbc.M203002200

Rojas-Quinchavil, G., Venegas-Jeldrez, P., Valencia, O., Guzmán-Venegas, R., Araneda, O. F., de la Rosa, F. J. B., & Flores-Leon, A. F. (2021). Hip and thigh muscular activity in professional soccer players during an isometric squat with and witho. Retos, 39(39), 697-704. https://doi.org/10.47197/RETOS.V0I39.82024

Rosenberry, T. L. (1979). Quantitative simulation of endplate currents at neuromuscular-junctions based on the reac-tion of acetylcholine with acetylcholine-receptor and acetylcholinesterase. Biophysical Journal, 26(2), 263-289. https://doi.org/10.1016/S0006-3495(79)85249-2

Soreq, H., & Seidman, S. (2001). Acetylcholinesterase - new roles for an old actor. Nature Reviews Neuroscience, 2(4), 294-302. https://doi.org/10.1038/35067589

Sosa Izquierdo, J. J., Salas Sánchez, J., & Latorre Román, P. Ángel. (2024). Characterization of strength training in professional and semi-professional soccer players in Spanish leagues. Retos, 53, 453-460. https://doi.org/10.47197/retos.v53.100614

Tamaki, T., Uchiyama, S., & Nakano, S. A. (1992) Weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Medicine and Science in Sports and Exercise, 24(8), 881-886. PMID: 1406173.

Xu, M. L., Bi, C. W. C., Cheng, L. K. W., Mak, S., Yao, P., Luk, W. K. W., Lau, K. K. M., Cheng, A. W. M., & Tsim, K. W. K. (2015). Reduced Expression of P2Y2 Receptor and Acetylcholinesterase at Neuromuscular Junc-tion of P2Y1 Receptor Knock-out Mice. Journal of Molecular Neuroscience, 57(3), 446-451. https://doi.org/10.1007/s12031-015-0591-9

Downloads

Publicado

2024-03-27

Como Citar

Rodrigues da Conceição, R. ., Laureano-Melo, R. ., da Silva Almeida, C. ., Cenélia Matos da Silva, A., Luiz Bezerra da Silveira, A. ., Vidal Linhares, R., Porto Marassi, M., Akemi Sato, M., Giannoco, G., Costa e Silva , G. ., & Côrtes, W. (2024). O treinamento isométrico promove alterações na acetilcolinesterase e na força muscular. Retos, 55, 72–77. https://doi.org/10.47197/retos.v55.103877

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.