Efeitos agudos do exercício de intensidade constante e moderada nos níveis circulantes do fator de crescimento de fibroblastos 21, resistina e adiponectina de jovens adultos fisicamente inativos

Autores

  • Jeremías Carrasco-Molina School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
  • Giannina Iuspa-Santelices School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
  • Francisca Flores-Ojeda School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
  • Matías Ruíz-Uribe Cardiorespiratory and Metabolic Function Laboratory – Neyün, Universidad Austral de Chile, Valdivia, Chile https://orcid.org/0009-0000-1535-0247
  • Sergio Francisco Martínez-Huenchullán Cardiorespiratory and Metabolic Function Laboratory – Neyün, Universidad San Sebastián https://orcid.org/0000-0002-6336-5571

DOI:

https://doi.org/10.47197/retos.v55.103732

Palavras-chave:

Exercise, Sedentary behavior, Metabolic syndrome, Endurance training, Cytokines

Resumo

Introdução: a inatividade física afeta a saúde metabólica e observou-se que o exercício reverte essas alterações. O fator de crescimento de fibroblastos (FGF) 21, a resistina e a adiponectina são citocinas afetadas pela inatividade física e pelo exercício, porém sua resposta aguda ao exercício em adultos jovens fisicamente inativos é desconhecida. Portanto, este estudo teve como objetivo investigar os efeitos de uma sessão de exercício contínuo de intensidade moderada (MICT) sobre o FGF21, a resistina e a adiponectina circulantes neles. Material e métodos: estudo quase-experimental onde foram recrutados 20 jovens fisicamente inativos com índice de massa corporal entre 18 e 30 kg/m2. Uma sessão de MICT foi realizada com intensidade de 60% da frequência cardíaca de reserva por 30 minutos. Peso, altura, circunferências de cintura e quadril, e percentuais de massa adiposa e muscular foram medidos antes do exercício, e amostras de sangue venoso foram coletadas antes e após o exercício, onde foram avaliadas glicemia, insulinemia, perfis lipídicos, transaminases, FGF21, resistina e adiponectina. Resultados: após o exercício, os níveis circulantes de insulina (mediana 23,5 vs 10,9 µIU/ml; p<0,05) e FGF21 (mediana 527 vs 409 pg/ml; p<0,05) diminuíram. Embora não tenham sido observadas alterações nos níveis de resistina e adiponectina (ambos p>0,05). Conclusão: Uma sessão de MICT diminui os níveis sanguíneos de FGF21, sem modificar as concentrações de resistina e adiponectina. Os mecanismos por trás dessas mudanças precisam ser investigados em estudos futuros.

Palavras-chave: exercício, comportamento sedentário, síndrome metabólica, treinamento resistido, citocinas.

Referências

Balboa-Castillo, T., Munoz, S., Seron, P., Andrade-Mayorga, O., Lavados-Romo, P., & Aguilar-Farias, N. (2023). Validity and reliability of the international physical activity questionnaire short form in Chilean adults. PLoS One, 18(10), e0291604. doi: https://doi.org/10.1371/journal.pone.0291604

Barroso, L. S. S., Faria, M. H. S., Souza-Gomes, A. F., Barros, J., Kakehasi, A. M., Vieira, E. L. M., . . . Nunes-Silva, A. (2023). Acute and Chronic Effects of Strength Training on Plasma Levels of Adipokines in Man. Int J Sports Med, 44(10), 751-758. doi: https://doi.org/10.1055/a-2079-1607

Becic, T., Studenik, C., & Hoffmann, G. (2018). Exercise Increases Adiponectin and Reduces Leptin Levels in Prediabetic and Diabetic Individuals: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med Sci (Basel), 6(4). doi: https://doi.org/10.3390/medsci6040097

Chow, L. S., Gerszten, R. E., Taylor, J. M., Pedersen, B. K., van Praag, H., Trappe, S., . . . Snyder, M. P. (2022). Exerkines in health, resilience and disease. Nat Rev Endocrinol, 18(5), 273-289. doi: https://doi.org/10.1038/s41574-022-00641-2

Collados-Gutiérrez, A., & Gutiérrez Vilahú, L. (2023). Efectiveness of High Intensity Interval Training versus Moderate Intensity Continuous Training in patients with chronic heart failure with reduced ejection fraction, in relation to aerobic capacity, left ventricular ejection fraction and quality of life. Systematic review. Retos, 49, 135-145. doi: https://doi.org/10.47197/retos.v49.93944

Cuevas-Ramos, D., Almeda-Valdes, P., Meza-Arana, C. E., Brito-Cordova, G., Gomez-Perez, F. J., Mehta, R., . . . Aguilar-Salinas, C. A. (2012). Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One, 7(5), e38022. doi: https://doi.org/10.1371/journal.pone.0038022

Del Cristo Rodriguez Perez, M., Gonzalez, D. A., Rodriguez, I. M., Coello, S. D., Fernandez, F. J. C., Diaz, B. B., & de Leon, A. C. (2022). Resistin as a risk factor for all-cause (and cardiovascular) death in the general population. Sci Rep, 12(1), 19627. doi: https://doi.org/10.1038/s41598-022-24039-2

Downes, L. (2015). Physical Activity and Dietary Habits of College Students. The Journal for Nurse Practitioners, 11(2), 192-198.e192. doi: https://doi.org/10.1016/j.nurpra.2014.11.015

Farhani, F., Baker, J., Amni, H., Martínez Huenchullán, S. F., Alijani, E., & Azhir, S. (2022). Effects of exercise intensity on soleus muscle myostatin and follistatin levels of hyperglycaemic rats. Retos, 44, 889-905. doi: https://doi.org/10.47197/retos.v44i0.91770

Fisher, F. M., Chui, P. C., Antonellis, P. J., Bina, H. A., Kharitonenkov, A., Flier, J. S., & Maratos-Flier, E. (2010). Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes, 59(11), 2781-2789. doi: https://doi.org/10.2337/db10-0193

Fortes, Y., Souza-Gomes, A., Moreira, A., Campos, L., de Moura, S., Barroso, L., . . . Nunes-Silva, A. (2023). A single session of strength training changed plasma levels of resistin, but not leptin in overweight and obese men. Sports Medicine and Health Science. doi: https://doi.org/10.1016/j.smhs.2023.12.001

Garneau, L., Parsons, S. A., Smith, S. R., Mulvihill, E. E., Sparks, L. M., & Aguer, C. (2020). Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Front Physiol, 11, 18. doi: https://doi.org/10.3389/fphys.2020.00018

Geng, L., Liao, B., Jin, L., Huang, Z., Triggle, C. R., Ding, H., . . . Xu, A. (2019). Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep, 26(10), 2738-2752 e2734. doi: https://doi.org/10.1016/j.celrep.2019.02.014

González-Zapata, L., Carreño-Aguirre, C., Estrada, A., Monsalve, J., & Álvarez, L. (2017). Exceso de peso corporal en estudiantes universitarios según variables sociodemográficas y estilos de vida. Rev Chil Nutr, 44(3), 251-261. doi: https://doi.org/10.4067/s0717-75182017000300251

Hamer, M., Sabia, S., Batty, G. D., Shipley, M. J., Tabak, A. G., Singh-Manoux, A., & Kivimaki, M. (2012). Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. Circulation, 126(8), 928-933. doi: https://doi.org/10.1161/CIRCULATIONAHA.112.103879

Jamurtas, A. Z., Theocharis, V., Koukoulis, G., Stakias, N., Fatouros, I. G., Kouretas, D., & Koutedakis, Y. (2006). The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur J Appl Physiol, 97(1), 122-126. doi: https://doi.org/10.1007/s00421-006-0169-x

Kadoglou, N. P., Perrea, D., Iliadis, F., Angelopoulou, N., Liapis, C., & Alevizos, M. (2007). Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care, 30(3), 719-721. doi: https://doi.org/10.2337/dc06-1149

Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., & Tobe, K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest, 116(7), 1784-1792. doi: https://doi.org/10.1172/JCI29126

Kharitonenkov, A., & Adams, A. C. (2014). Inventing new medicines: The FGF21 story. Mol Metab, 3(3), 221-229. doi: https://doi.org/10.1016/j.molmet.2013.12.003

Kondo, T., Kobayashi, I., & Murakami, M. (2006). Effect of exercise on circulating adipokine levels in obese young women. Endocr J, 53(2), 189-195. doi: https://doi.org/10.1507/endocrj.53.189

Lim, K., & Kim, K. (2020). Role of Exercise-induced Adiponectin Activation on Obese and Diabetic Individuals. Exercise Science, 29(3), 208-213. doi: https://doi.org/10.15857/ksep.2020.29.3.208

Martinez-Huenchullan, S. F., Ban, L. A., Olaya-Agudo, L. F., Maharjan, B. R., Williams, P. F., Tam, C. S., . . . Twigg, S. M. (2019). Constant-Moderate and High-Intensity Interval Training Have Differential Benefits on Insulin Sensitive Tissues in High-Fat Fed Mice. Front Physiol, 10, 459. doi: https://doi.org/10.3389/fphys.2019.00459

Martinez-Huenchullan, S. F., Tam, C. S., Ban, L. A., Ehrenfeld-Slater, P., McLennan, S. V., & Twigg, S. M. (2020). Skeletal muscle adiponectin induction in obesity and exercise. Metabolism, 102, 154008. doi: https://doi.org/10.1016/j.metabol.2019.154008

Nikitara, K., Odani, S., Demenagas, N., Rachiotis, G., Symvoulakis, E., & Vardavas, C. (2021). Prevalence and correlates of physical inactivity in adults across 28 European countries. Eur J Public Health, 31(4), 840-845. doi: https://doi.org/10.1093/eurpub/ckab067

Pedersen, B. K. (2019). The Physiology of Optimizing Health with a Focus on Exercise as Medicine. Annu Rev Physiol, 81, 607-627. doi: https://doi.org/10.1146/annurev-physiol-020518-114339

Peppler, W. T., Anderson, Z. G., MacRae, L. M., MacPherson, R. E. K., & Wright, D. C. (2017). Habitual physical activity protects against lipopolysaccharide-induced inflammation in mouse adipose tissue. Adipocyte, 6(1), 1-11. doi: https://doi.org/10.1080/21623945.2016.1259778

Porflitt-Rodriguez, M., Guzman-Arriagada, V., Sandoval-Valderrama, R., Tam, C. S., Pavicic, F., Ehrenfeld, P., & Martinez-Huenchullan, S. (2022). Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism, 129, 155137. doi: https://doi.org/10.1016/j.metabol.2022.155137

Rachwalik, M., Hurkacz, M., Sienkiewicz-Oleszkiewicz, B., & Jasinski, M. (2021). Role of resistin in cardiovascular diseases: Implications for prevention and treatment. Adv Clin Exp Med, 30(8), 865-874. doi: https://doi.org/10.17219/acem/135978

Sabaratnam, R., Pedersen, A. J. T., Kristensen, J. M., Handberg, A., Wojtaszewski, J. F. P., & Hojlund, K. (2018). Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Physiol Rep, 6(12), e13723. doi: https://doi.org/10.14814/phy2.13723

Sargeant, J. A., Aithal, G. P., Takamura, T., Misu, H., Takayama, H., Douglas, J. A., . . . King, J. A. (2018). The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl Physiol Nutr Metab, 43(5), 482-490. doi: https://doi.org/10.1139/apnm-2017-0639

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., . . . Rejeki, P. S. (2023). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194-1209. doi: https://doi.org/10.47197/retos.v51.101189

Siddiqui, K., Scaria Joy, S., & George, T. (2020). Circulating resistin levels in relation with insulin resistance, inflammatory and endothelial dysfunction markers in patients with type 2 diabetes and impaired fasting glucose. Endocrine and Metabolic Science, 1(3-4). doi: https://doi.org/10.1016/j.endmts.2020.100059

Slusher, A. L., Whitehurst, M., Zoeller, R. F., Mock, J. T., Maharaj, M., & Huang, C. J. (2015). Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals. Nutr Metab Cardiovasc Dis, 25(9), 839-845. doi: https://doi.org/10.1016/j.numecd.2015.06.002

Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., . . . Lazar, M. A. (2001). The hormone resistin links obesity to diabetes. Nature, 409(6818), 307-312. doi: https://doi.org/10.1038/35053000

Vranic, M., Gauthier, C., Bilinski, D., Wasserman, D., El Tayeb, K., Hetenyi, G., Jr., & Lickley, H. L. (1984). Catecholamine responses and their interactions with other glucoregulatory hormones. Am J Physiol, 247(2 Pt 1), E145-156. doi: https://doi.org/10.1152/ajpendo.1984.247.2.E145

Warburton, D. E., Gledhill, N., Jamnik, V. K., Bredin, S. S., McKenzie, D. C., Stone, J., . . . Shephard, R. J. (2011). Evidence-based risk assessment and recommendations for physical activity clearance: Consensus Document 2011. Appl Physiol Nutr Metab, 36 Suppl 1, S266-298. doi: https://doi.org/10.1139/h11-062

WHO. (2022). Global status report on physical activity 2022. Retrieved from https://www.who.int/publications/i/item/9789240059153

Xiong, Y., Chen, Y., Liu, Y., & Zhang, B. (2020). Moderate-Intensity Continuous Training Improves FGF21 and KLB Expression in Obese Mice. Biochemistry (Mosc), 85(8), 938-946. doi: https://doi.org/10.1134/S000629792008009X

Yang, W. S., Lee, W. J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C. L., . . . Chuang, L. M. (2002). Plasma adiponectin levels in overweight and obese Asians. Obes Res, 10(11), 1104-1110. doi: https://doi.org/10.1038/oby.2002.150

Downloads

Publicado

2024-04-09

Como Citar

Carrasco-Molina, J., Iuspa-Santelices, G., Flores-Ojeda, F., Ruíz-Uribe, M., & Martínez-Huenchullán, S. F. (2024). Efeitos agudos do exercício de intensidade constante e moderada nos níveis circulantes do fator de crescimento de fibroblastos 21, resistina e adiponectina de jovens adultos fisicamente inativos. Retos, 55, 379–385. https://doi.org/10.47197/retos.v55.103732

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.